Expressions for translation operators (to be checked)

Former-commit-id: f19217f0f3f66a79d724840f633731f44bfd755f
This commit is contained in:
Marek Nečada 2019-07-31 11:43:24 +03:00
parent dba0a26877
commit 76abecce48
2 changed files with 43 additions and 16 deletions

View File

@ -713,7 +713,7 @@ Abstract.
\end_layout \end_layout
\begin_layout Itemize \begin_layout Itemize
Translation operators: explicit expression, also in sph. Translation operators: rewrite in sph.
harm. harm.
convention independent form. convention independent form.
\end_layout \end_layout

View File

@ -1535,10 +1535,37 @@ outside.
\begin_layout Standard \begin_layout Standard
In our convention, the regular translation operator can be expressed explicitly In our convention, the regular translation operator can be expressed explicitly
as as (TODO CHECK CAREFULLY FOR POSSIBLE
\begin_inset Formula $(-1)^{m'}$
\end_inset
AND SIMILAR FACTORS AND REWRITE IN TERMS OF SPHERICAL HARMONICS)
\begin_inset Note Note
status open
\begin_layout Plain Layout
Teďka jsou tam zkopírovány výrazy pro C a D z Kristenssona, chybějí fase
\end_layout
\end_inset
\begin_inset Formula \begin_inset Formula
\begin{multline} \begin{multline}
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator} \tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}.\label{eq:translation operator}
\end{multline} \end{multline}
\end_inset \end_inset