Expressions for translation operators (to be checked)
Former-commit-id: f19217f0f3f66a79d724840f633731f44bfd755f
This commit is contained in:
parent
dba0a26877
commit
76abecce48
|
@ -713,7 +713,7 @@ Abstract.
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Translation operators: explicit expression, also in sph.
|
||||
Translation operators: rewrite in sph.
|
||||
harm.
|
||||
convention independent form.
|
||||
\end_layout
|
||||
|
|
|
@ -1535,10 +1535,37 @@ outside.
|
|||
|
||||
\begin_layout Standard
|
||||
In our convention, the regular translation operator can be expressed explicitly
|
||||
as
|
||||
as (TODO CHECK CAREFULLY FOR POSSIBLE
|
||||
\begin_inset Formula $(-1)^{m'}$
|
||||
\end_inset
|
||||
|
||||
AND SIMILAR FACTORS AND REWRITE IN TERMS OF SPHERICAL HARMONICS)
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Teďka jsou tam zkopírovány výrazy pro C a D z Kristenssona, chybějí fase
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
|
||||
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
||||
\times\begin{pmatrix}l & l' & \lambda\\
|
||||
0 & 0 & 0
|
||||
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
||||
m & -m' & m'-m
|
||||
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
|
||||
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
|
||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
|
||||
\times\begin{pmatrix}l & l' & \lambda-1\\
|
||||
0 & 0 & 0
|
||||
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
||||
m & -m' & m'-m
|
||||
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
||||
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}.\label{eq:translation operator}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue