Functions to calculate the R,Q matrices for axially symmetric particles separately.

Former-commit-id: 0861a9014f293153b786b879bb3803d5ee002b56
This commit is contained in:
Marek Nečada 2019-08-13 13:30:48 +03:00
parent 4ac2a7b72e
commit 7a0386086a
4 changed files with 122 additions and 5 deletions

View File

@ -204,6 +204,22 @@ cdef class __AxialSymParams:
self.lMax_extend = args[0] self.lMax_extend = args[0]
if 'lMax_extend' in kwargs.keys(): if 'lMax_extend' in kwargs.keys():
self.lMax_extend = kwargs['lMax_extend'] self.lMax_extend = kwargs['lMax_extend']
if self.lMax_extend == 0:
self.lMax_extend = 1
def Q_transposed(self, cdouble omega, norm):
cdef size_t n = 2*(self.p.lMax_extend*(self.p.lMax_extend +2))
cdef np.ndarray[np.complex_t, ndim=2] arr = np.empty((n,n), dtype=complex, order='C')
cdef cdouble[:,::1] arrview = arr
qpms_tmatrix_generator_axialsym_RQ_transposed_fill(&arrview[0][0], omega, &self.p, norm, QPMS_HANKEL_PLUS)
return arr
def R_transposed(self, cdouble omega, norm):
cdef size_t n = 2*(self.p.lMax_extend*(self.p.lMax_extend +2))
cdef np.ndarray[np.complex_t, ndim=2] arr = np.empty((n,n), dtype=complex, order='C')
cdef cdouble[:,::1] arrview = arr
qpms_tmatrix_generator_axialsym_RQ_transposed_fill(&arrview[0][0], omega, &self.p, norm, QPMS_BESSEL_REGULAR)
return arr
cdef class TMatrixGenerator: cdef class TMatrixGenerator:
cdef qpms_tmatrix_generator_t g cdef qpms_tmatrix_generator_t g
@ -221,7 +237,7 @@ cdef class TMatrixGenerator:
self.g.params = (<__AxialSymParams?>self.holder).rawpointer() self.g.params = (<__AxialSymParams?>self.holder).rawpointer()
# TODO INTERPOLATOR # TODO INTERPOLATOR
else: else:
raise ValueError("Can't construct TMatrixGenerator from that") raise TypeError("Can't construct TMatrixGenerator from that")
def __call__(self, arg, cdouble omega): def __call__(self, arg, cdouble omega):
cdef CTMatrix tm cdef CTMatrix tm
@ -238,6 +254,15 @@ cdef class TMatrixGenerator:
else: else:
raise ValueError("Must specify CTMatrix or BaseSpec") raise ValueError("Must specify CTMatrix or BaseSpec")
def Q_transposed(self, cdouble omega, norm):
if self.g.function != qpms_tmatrix_generator_axialsym:
raise TypeError("Applicable only for axialsym generators")
return self.holder.Q_transposed(omega, norm)
def R_transposed(self, cdouble omega, norm):
if self.g.function != qpms_tmatrix_generator_axialsym:
raise TypeError("Applicable only for axialsym generators")
return self.holder.R_transposed(omega, norm)
# Better "constructors": # Better "constructors":
@staticmethod @staticmethod
def sphere(outside, inside, r): def sphere(outside, inside, r):

View File

@ -424,6 +424,8 @@ cdef extern from "tmatrices.h":
cdouble epsilon_fg, cdouble epsilon_bg) cdouble epsilon_fg, cdouble epsilon_bg)
qpms_tmatrix_t *qpms_tmatrix_spherical_mu0(const qpms_vswf_set_spec_t *bspec, double a, qpms_tmatrix_t *qpms_tmatrix_spherical_mu0(const qpms_vswf_set_spec_t *bspec, double a,
double omega, cdouble epsilon_fg, cdouble epsilon_bg) double omega, cdouble epsilon_fg, cdouble epsilon_bg)
qpms_errno_t qpms_tmatrix_generator_axialsym_RQ_transposed_fill(cdouble *target, cdouble omega,
const qpms_tmatrix_generator_axialsym_param_t *param, qpms_normalisation_t norm, qpms_bessel_t J)
cdef extern from "pointgroups.h": cdef extern from "pointgroups.h":
bint qpms_pg_is_finite_axial(qpms_pointgroup_class cls) bint qpms_pg_is_finite_axial(qpms_pointgroup_class cls)

View File

@ -724,7 +724,6 @@ qpms_errno_t qpms_tmatrix_axialsym_fill(
for(size_t i2 = 0; i2 < bspecQR->n; ++i2) { for(size_t i2 = 0; i2 < bspecQR->n; ++i2) {
// NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs // NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs
const size_t iQR = i1 + i2 * bspecQR->n; const size_t iQR = i1 + i2 * bspecQR->n;
double abserr; // gsl_integration_qag() needs this; thrown away for now
qpms_m_t m1, m2; qpms_m_t m1, m2;
qpms_l_t l1, l2; qpms_l_t l1, l2;
qpms_vswf_type_t t1, t2; qpms_vswf_type_t t1, t2;
@ -739,7 +738,8 @@ qpms_errno_t qpms_tmatrix_axialsym_fill(
p.l = l1; p.l_in = l2; p.l = l1; p.l_in = l2;
p.t = t1; p.t_in = t2; p.t = t1; p.t_in = t2;
double result; // We throw the quadrature error estimate away. double result;
double abserr; // gsl_integration_qag() needs this; thrown away for now
// Re(R') // Re(R')
p.btype = QPMS_BESSEL_REGULAR; p.btype = QPMS_BESSEL_REGULAR;
p.realpart = true; p.realpart = true;
@ -794,7 +794,82 @@ qpms_errno_t qpms_tmatrix_axialsym_fill(
return QPMS_SUCCESS; return QPMS_SUCCESS;
} }
qpms_errno_t qpms_tmatrix_generator_axialsym(qpms_tmatrix_t *t, complex double omega, const void *param) { qpms_errno_t qpms_tmatrix_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, qpms_epsmu_t outside, qpms_epsmu_t inside,
qpms_arc_function_t shape, qpms_l_t lMaxQR, qpms_normalisation_t norm,qpms_bessel_t J)
{
QPMS_UNTESTED; // TODO also check whether this is valid for all norms.
struct tmatrix_axialsym_integral_param_t p;
qpms_vswf_set_spec_t *bspecQR = qpms_vswf_set_spec_from_lMax(lMaxQR, norm);
p.k = qpms_wavenumber(omega, outside);
p.k_in = qpms_wavenumber(omega, inside);
p.z = qpms_waveimpedance(outside);
p.z_in = qpms_waveimpedance(inside);
p.f = shape;
p.bspec = bspecQR;
p.btype = J;
const gsl_function f = {tmatrix_axialsym_integrand, (void *) &p};
// Not sure what the size should be, but this should be more than enough.
const size_t intlimit = 1024;
const double epsrel = TMATRIX_AXIALSYM_INTEGRAL_EPSREL;
const double epsabs = TMATRIX_AXIALSYM_INTEGRAL_EPSABS;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(intlimit);
for(size_t i1 = 0; i1 < bspecQR->n; ++i1)
for(size_t i2 = 0; i2 < bspecQR->n; ++i2) {
// NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs
const size_t iQR = i1 + i2 * bspecQR->n;
qpms_m_t m1, m2;
qpms_l_t l1, l2;
qpms_vswf_type_t t1, t2;
const qpms_uvswfi_t u1 = bspecQR->ilist[i1], u2 = bspecQR->ilist[i2];
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u1, &t1, &m1, &l1));
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u2, &t2, &m2, &l2));
if (m1 + m2) {
target[iQR] = 0;
} else {
p.m = m1;
p.l = l1; p.l_in = l2;
p.t = t1; p.t_in = t2;
double result;
double abserr; // gsl_integration_qag() needs this; thrown away for now
// Re(R' or Q')
p.realpart = true;
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
intlimit, 2, w, &result, &abserr));
target[iQR] = result;
// Im(R' or Q')
p.realpart = false;
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
intlimit, 2, w, &result, &abserr));
target[iQR] += I*result;
}
}
gsl_integration_workspace_free(w);
qpms_vswf_set_spec_free(bspecQR);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_tmatrix_generator_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, const qpms_tmatrix_generator_axialsym_param_t *param,
qpms_normalisation_t norm, qpms_bessel_t J)
{
const qpms_tmatrix_generator_axialsym_param_t *p = param;
return qpms_tmatrix_axialsym_RQ_transposed_fill(target, omega,
p->outside.function(omega, p->outside.params),
p->inside.function(omega, p->inside.params),
p->shape,
p->lMax_extend, norm, J);
}
qpms_errno_t qpms_tmatrix_generator_axialsym(qpms_tmatrix_t *t, complex double omega, const void *param)
{
const qpms_tmatrix_generator_axialsym_param_t *p = param; const qpms_tmatrix_generator_axialsym_param_t *p = param;
return qpms_tmatrix_axialsym_fill(t, omega, return qpms_tmatrix_axialsym_fill(t, omega,
p->outside.function(omega, p->outside.params), p->outside.function(omega, p->outside.params),
@ -814,4 +889,3 @@ qpms_errno_t qpms_tmatrix_generator_constant(qpms_tmatrix_t *t,
return QPMS_SUCCESS; return QPMS_SUCCESS;
} }

View File

@ -488,6 +488,22 @@ qpms_errno_t qpms_tmatrix_generator_axialsym(qpms_tmatrix_t *t, ///< T-matrix to
); );
/// Computes the (reduced) transposed R or Q matrix for axially symmetric particle (useful for debugging).
qpms_errno_t qpms_tmatrix_generator_axialsym_RQ_transposed_fill(complex double *target,
complex double omega,
const qpms_tmatrix_generator_axialsym_param_t *param,
qpms_normalisation_t norm,
qpms_bessel_t J
);
/// Computes the (reduced) transposed R or Q matrix for axially symmetric particle (useful mostly for debugging).
qpms_errno_t qpms_tmatrix_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, qpms_epsmu_t outside, qpms_epsmu_t inside,
qpms_arc_function_t shape, qpms_l_t lMaxQR, qpms_normalisation_t norm,
qpms_bessel_t J ///< Use QPMS_BESSEL_REGULAR to calculate \f$ R^T\f$ or QPMS_HANKEL_PLUS to calculate \f$ Q^T\f$.
);
#if 0 #if 0
// Abstract types that describe T-matrix/particle/scatsystem symmetries // Abstract types that describe T-matrix/particle/scatsystem symmetries
// To be implemented later. See also the thoughts in the beginning of groups.h. // To be implemented later. See also the thoughts in the beginning of groups.h.