[notes] radpower / Lossless scatterer
Former-commit-id: 7b79d5a4331b7ec0492d453c5d142dba0f0d3f81
This commit is contained in:
parent
8b92c1df1d
commit
7f6f9a82e0
|
@ -543,6 +543,101 @@ reference "eq:Absorption is never negative in Dirac notation"
|
|||
is the power absorbed by the scatterer.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Lossless scatterer
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Radiation energy conserving scatterer is not very realistic, but it might
|
||||
provide some simplifications necessary for developing the topological theory.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A scatterer always conserves the radiation energy iff
|
||||
\begin_inset Formula $W=0$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
iff
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}=0.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Diagonal
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
To get some insight into what does this mean, it might be useful to start
|
||||
with a diagonal
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix,
|
||||
\begin_inset Formula $T_{mn}=t_{n}\delta_{mn}$
|
||||
\end_inset
|
||||
|
||||
(valid for e.g.
|
||||
a spherical particle).
|
||||
Then for the
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
-th matrix element we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(\Re t_{n}\right)^{2}+\left(\Im t_{n}\right)^{2}+\Re t_{n}=0
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(\Re t_{n}+\frac{1}{2}\right)^{2}+\left(\Im t_{n}\right)^{2}=\left(\frac{1}{2}\right)^{2}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which gives a relation between the real and imaginary parts of the scattering
|
||||
coefficients.
|
||||
There are two
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
extremal
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
real values,
|
||||
\begin_inset Formula $t_{n}=0$
|
||||
\end_inset
|
||||
|
||||
(no scattering at all) and
|
||||
\begin_inset Formula $t_{n}=-1$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In general, the possible values lie on a half-unit circle in the complex
|
||||
plane with the centre at
|
||||
\begin_inset Formula $-1/2$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The half-unit disk delimited by the circle is the (realistic) lossy region,
|
||||
while everything outside it represents (unrealistic) system with gain.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Multiple scattering
|
||||
\end_layout
|
||||
|
@ -645,5 +740,11 @@ or, in the indexless notation for the whole system
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\series bold
|
||||
TODO
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
||||
|
|
Loading…
Reference in New Issue