[notes] radpower / Lossless scatterer
Former-commit-id: 7b79d5a4331b7ec0492d453c5d142dba0f0d3f81
This commit is contained in:
parent
8b92c1df1d
commit
7f6f9a82e0
|
@ -543,6 +543,101 @@ reference "eq:Absorption is never negative in Dirac notation"
|
||||||
is the power absorbed by the scatterer.
|
is the power absorbed by the scatterer.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
Lossless scatterer
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Radiation energy conserving scatterer is not very realistic, but it might
|
||||||
|
provide some simplifications necessary for developing the topological theory.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
A scatterer always conserves the radiation energy iff
|
||||||
|
\begin_inset Formula $W=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, i.e.
|
||||||
|
iff
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}=0.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection
|
||||||
|
Diagonal
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
To get some insight into what does this mean, it might be useful to start
|
||||||
|
with a diagonal
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix,
|
||||||
|
\begin_inset Formula $T_{mn}=t_{n}\delta_{mn}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(valid for e.g.
|
||||||
|
a spherical particle).
|
||||||
|
Then for the
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-th matrix element we have
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\left(\Re t_{n}\right)^{2}+\left(\Im t_{n}\right)^{2}+\Re t_{n}=0
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
or
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\left(\Re t_{n}+\frac{1}{2}\right)^{2}+\left(\Im t_{n}\right)^{2}=\left(\frac{1}{2}\right)^{2}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
which gives a relation between the real and imaginary parts of the scattering
|
||||||
|
coefficients.
|
||||||
|
There are two
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
extremal
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
real values,
|
||||||
|
\begin_inset Formula $t_{n}=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(no scattering at all) and
|
||||||
|
\begin_inset Formula $t_{n}=-1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
In general, the possible values lie on a half-unit circle in the complex
|
||||||
|
plane with the centre at
|
||||||
|
\begin_inset Formula $-1/2$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The half-unit disk delimited by the circle is the (realistic) lossy region,
|
||||||
|
while everything outside it represents (unrealistic) system with gain.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Multiple scattering
|
Multiple scattering
|
||||||
\end_layout
|
\end_layout
|
||||||
|
@ -645,5 +740,11 @@ or, in the indexless notation for the whole system
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\series bold
|
||||||
|
TODO
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\end_body
|
\end_body
|
||||||
\end_document
|
\end_document
|
||||||
|
|
Loading…
Reference in New Issue