From 814ea36415ce8ef17720821ad99627d940cf9804 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Mon, 11 Sep 2017 08:07:23 +0000 Subject: [PATCH] [Ewald] ... Former-commit-id: e9f98d06ca7ccfad3d9181d083919d1a146f8860 --- notes/ewald.lyx | 126 ++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 122 insertions(+), 4 deletions(-) diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 320dfd2..8d876ff 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -1489,6 +1489,8 @@ Let's polish it a bit more \end_inset +\size footnotesize + \begin_inset Formula \begin{multline} \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\ @@ -1497,6 +1499,8 @@ k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq: \end_inset + +\size default with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. The conditions from @@ -1525,6 +1529,10 @@ reference "eq:2D Hankel transform of regularized outgoing wave, decomposition" \end_layout \begin_layout Standard +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout Let's do it. \begin_inset Formula \begin{eqnarray*} @@ -1534,6 +1542,11 @@ Let's do it. \end_inset + +\end_layout + +\end_inset + One problematic element here is the gamma function \begin_inset Formula $\text{Γ}\left(2-q+n\right)$ \end_inset @@ -1561,6 +1574,76 @@ polynomial \end_inset . + In other cases, different expressions can be obtained from +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1" + +\end_inset + + using various transformation formulae from either DLMF or +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{russian} +\end_layout + +\end_inset + +Прудников +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{russian} +\end_layout + +\end_inset + +. + +\end_layout + +\begin_layout Standard +In fact, Mathematica is usually able to calculate the transforms for specific + values of +\begin_inset Formula $\kappa,q,n$ +\end_inset + +, but it did not find any general formula for me. + The resulting expressions are finite sums of algebraic functions, Table + +\begin_inset CommandInset ref +LatexCommand ref +reference "tab:Asymptotical-behaviour-Mathematica" + +\end_inset + + shows how fast they decay with growing +\begin_inset Formula $k$ +\end_inset + + for some parameters. + The only case where Mathematica did not help at all is +\begin_inset Formula $q=2,n=0$ +\end_inset + +, which is unfortunately important. + But if I have not made some mistake, the expression +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded" + +\end_inset + + is applicable for this case. \end_layout \begin_layout Standard @@ -2712,6 +2795,41 @@ reference "eq:prudnikov2 eq 2.12.9.14" \end_layout +\begin_layout Section +Major TODOs and open questions +\end_layout + +\begin_layout Itemize +Check if +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded" + +\end_inset + + gives a satisfactory result for the case +\begin_inset Formula $q=2,n=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Analyse the behaviour +\begin_inset Formula $k\to k_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Find a general algorithm for generating the expressions of the Hankel transforms. +\end_layout + +\begin_layout Itemize +Three-dimensional case. +\end_layout + \begin_layout Section (Appendix) Fourier vs. Hankel transform @@ -2761,7 +2879,7 @@ where the spherical Hankel transform 2) \begin_inset Formula \[ -\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). \] \end_inset @@ -2771,7 +2889,7 @@ Using this convention, the inverse spherical Hankel transform is given by 3) \begin_inset Formula \[ -g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), \] \end_inset @@ -2784,7 +2902,7 @@ so it is not unitary. An unitary convention would look like this: \begin_inset Formula \begin{equation} -\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \end{equation} \end_inset @@ -2838,7 +2956,7 @@ where the Hankel transform of order is defined as \begin_inset Formula \begin{equation} -\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} +\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} \end{equation} \end_inset