Computing translation coefficients with precalculated multipliers now
working Former-commit-id: 7a7b8fd403f1624661a198119080937193f4a8c7
This commit is contained in:
parent
c44a69c182
commit
816771be8d
|
@ -0,0 +1,54 @@
|
||||||
|
#include "translations.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
//#include <math.h>
|
||||||
|
#include <complex.h>
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
int m, n, mu, nu;
|
||||||
|
sph_t kdlj;
|
||||||
|
qpms_bessel_t J;
|
||||||
|
complex double result_A, result_B;
|
||||||
|
} testcase_single_trans_t;
|
||||||
|
|
||||||
|
testcase_single_trans_t testcases_Taylor[] = {
|
||||||
|
#include "testcases_taylor"
|
||||||
|
};
|
||||||
|
|
||||||
|
int lMax=10;
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALIZATION_TAYLOR);
|
||||||
|
|
||||||
|
for(testcase_single_trans_t *tc = testcases_Taylor; tc->J != QPMS_BESSEL_UNDEF; tc++) {
|
||||||
|
if (!tc->n || !tc->nu || tc->n > lMax || tc->nu > lMax ) continue;
|
||||||
|
|
||||||
|
printf("m=%d, n=%d, mu=%d, nu=%d,\n", tc->m,tc->n,tc->mu,tc->nu);
|
||||||
|
complex double A = qpms_trans_single_A_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
complex double B = qpms_trans_single_B_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
complex double A2 = qpms_trans_calculator_get_A(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
complex double B2 = qpms_trans_calculator_get_B(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
printf("A = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||||
|
creal(A), cimag(A), (0 == cabs(tc->result_A - A)) ? 0 :
|
||||||
|
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)),
|
||||||
|
tc->J);
|
||||||
|
printf("A' = %.16f+%.16fj, relerr=%.16f, relerr2=%.3e\n",
|
||||||
|
creal(A2), cimag(A2), (0 == cabs(tc->result_A - A2)) ? 0 :
|
||||||
|
cabs(tc->result_A - A2)/((cabs(A2) < cabs(tc->result_A)) ? cabs(A2) : cabs(tc->result_A)),
|
||||||
|
(0 == cabs(A - A2)) ? 0 :
|
||||||
|
cabs(A - A2)/((cabs(A2) < cabs(A)) ? cabs(A2) : cabs(A))
|
||||||
|
);
|
||||||
|
printf("B = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||||
|
creal(B), cimag(B), (0 == cabs(tc->result_B - B)) ? 0 :
|
||||||
|
cabs(tc->result_B - B)/((cabs(B) < cabs(tc->result_B)) ? cabs(B) : cabs(tc->result_B)),
|
||||||
|
tc->J);
|
||||||
|
printf("B' = %.16f+%.16fj, relerr=%.16f, relerr2=%.3e\n",
|
||||||
|
creal(B2), cimag(B2), (0 == cabs(tc->result_B - B2)) ? 0 :
|
||||||
|
cabs(tc->result_B - B2)/((cabs(B2) < cabs(tc->result_B)) ? cabs(B2) : cabs(tc->result_B)),
|
||||||
|
(0 == cabs(B - B2)) ? 0 :
|
||||||
|
cabs(B - B2)/((cabs(B2) < cabs(B)) ? cabs(B2) : cabs(B))
|
||||||
|
);
|
||||||
|
}
|
||||||
|
qpms_trans_calculator_free(c);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
|
@ -84,7 +84,8 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
|
||||||
for(int q = 0; q <= qmax; ++q) {
|
for(int q = 0; q <= qmax; ++q) {
|
||||||
int p = n+nu-2*q;
|
int p = n+nu-2*q;
|
||||||
int Pp_order = mu-m;
|
int Pp_order = mu-m;
|
||||||
if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
||||||
|
assert(p >= abs(Pp_order));
|
||||||
double a1q_n = a1q[q] / a1q0;
|
double a1q_n = a1q[q] / a1q0;
|
||||||
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
||||||
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||||||
|
@ -105,7 +106,7 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
|
||||||
}
|
}
|
||||||
|
|
||||||
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
bool r_ge_d, qpms_bessel_t J) { // TODO make J enum
|
bool r_ge_d, qpms_bessel_t J) {
|
||||||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||||||
double costheta = cos(kdlj.theta);
|
double costheta = cos(kdlj.theta);
|
||||||
|
|
||||||
|
@ -186,7 +187,8 @@ static inline size_t qpms_mn2y(int m, int n) {
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline int qpms_y2n(size_t y) {
|
static inline int qpms_y2n(size_t y) {
|
||||||
return (sqrt(5+y)-2)/2; // the cast will truncate the fractional part, which is what we want
|
//return (sqrt(5+y)-2)/2; // the cast will truncate the fractional part, which is what we want
|
||||||
|
return sqrt(y+1);
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline int qpms_yn2m(size_t y, int n) {
|
static inline int qpms_yn2m(size_t y, int n) {
|
||||||
|
@ -207,8 +209,148 @@ static inline size_t qpms_trans_calculator_index_yyu(const qpms_trans_calculator
|
||||||
return c->nelem * y + yu;
|
return c->nelem * y + yu;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#define SQ(x) ((x)*(x))
|
#define SQ(x) ((x)*(x))
|
||||||
|
|
||||||
|
//#if 0
|
||||||
|
static void qpms_trans_calculator_multipliers_A_Taylor(
|
||||||
|
complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||||||
|
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||||||
|
double a1q[qmax+1];
|
||||||
|
int err;
|
||||||
|
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||||||
|
if (err) abort();
|
||||||
|
double a1q0 = a1q[0];
|
||||||
|
|
||||||
|
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||||||
|
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||||||
|
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) - 0.5*( // ex-prenormratio
|
||||||
|
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
|
||||||
|
double presum = exp(exponent);
|
||||||
|
presum *= min1pow(m+n) * sqrt((2.*n+1)/(2.*nu+1)) / (4*n);
|
||||||
|
|
||||||
|
for(int q = 0; q <= qmax; q++) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
int Pp_order = mu - m;
|
||||||
|
assert(p >= abs(Pp_order));
|
||||||
|
double a1q_n = a1q[q] / a1q0;
|
||||||
|
// Assuming non_normalized legendre polynomials!
|
||||||
|
double Ppfac = (Pp_order >= 0) ? 1 :
|
||||||
|
min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||||||
|
double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n;
|
||||||
|
dest[q] = presum * summandfac * Ppfac;
|
||||||
|
// FIXME I might not need complex here
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//#endif
|
||||||
|
#if 0
|
||||||
|
static void qpms_trans_calculator_multipliers_A_Taylor(
|
||||||
|
complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||||||
|
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||||||
|
double a1q[qmax+1];
|
||||||
|
int err;
|
||||||
|
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||||||
|
if (err) abort();
|
||||||
|
double a1q0 = a1q[0];
|
||||||
|
for(int q = 0; q <= qmax; ++q) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
int Pp_order = mu-m;
|
||||||
|
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
||||||
|
assert(p >= abs(Pp_order));
|
||||||
|
double a1q_n = a1q[q] / a1q0;
|
||||||
|
//double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
||||||
|
//complex double zp = bes[p];
|
||||||
|
dest[q] = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n /* * zp * Pp*/;
|
||||||
|
if (Pp_order < 0) dest[q] *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||||||
|
//sum += summandq;
|
||||||
|
}
|
||||||
|
|
||||||
|
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||||||
|
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||||||
|
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
||||||
|
complex double presum = exp(exponent);
|
||||||
|
presum *=/* cexp(I*(mu-m)*kdlj.phi) * */ min1pow(m) * ipow(nu+n) / (4*n);
|
||||||
|
|
||||||
|
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
|
||||||
|
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
|
||||||
|
//return (presum / prenormratio) * sum;
|
||||||
|
for(int q=0;q<=qmax;++q) dest[q] *= presum / prenormratio;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static void qpms_trans_calculator_multipliers_B_Taylor(
|
||||||
|
complex double *dest, int m, int n, int mu, int nu, int Qmax) {
|
||||||
|
assert(Qmax == gaunt_q_max(-m,n+1,mu,nu));
|
||||||
|
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||||||
|
assert(Qmax == q2max);
|
||||||
|
// FIXME remove the q2max variable altogether, as it is probably equal
|
||||||
|
// to Qmax
|
||||||
|
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||||||
|
int err;
|
||||||
|
if (mu == nu) {
|
||||||
|
for (int q = 0; q <= q2max; ++q)
|
||||||
|
a2q[q] = 0;
|
||||||
|
a2q0 = 1;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||||||
|
a2q0 = a2q[0];
|
||||||
|
}
|
||||||
|
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
|
||||||
|
a3q0 = a3q[0];
|
||||||
|
|
||||||
|
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||||||
|
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||||||
|
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) - 0.5 * (
|
||||||
|
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)
|
||||||
|
-lgamma(nu+mu+1));
|
||||||
|
complex double presum = exp(exponent);
|
||||||
|
presum *= I * (min1pow(m+n) *sqrt((2.*n+1)/(2.*nu+1)) / (
|
||||||
|
(4*n)*(n+1)*(n+m+1)));
|
||||||
|
|
||||||
|
for (int q = 0; q <= Qmax; ++q) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
double a2q_n = a2q[q]/a2q0;
|
||||||
|
double a3q_n = a3q[q]/a3q0;
|
||||||
|
int Pp_order_ = mu-m;
|
||||||
|
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||||||
|
assert(p+1 >= abs(Pp_order_));
|
||||||
|
double Ppfac = (Pp_order_ >= 0) ? 1 :
|
||||||
|
|
||||||
|
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||||||
|
double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||||||
|
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||||||
|
*min1pow(q));
|
||||||
|
dest[q] = Ppfac * summandq * presum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int qpms_trans_calculator_multipliers_A(qpms_normalization_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||||||
|
switch (norm) {
|
||||||
|
case QPMS_NORMALIZATION_TAYLOR:
|
||||||
|
qpms_trans_calculator_multipliers_A_Taylor(dest,m,n,mu,nu,qmax);
|
||||||
|
return 0;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
int qpms_trans_calculator_multipliers_B(qpms_normalization_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||||||
|
switch (norm) {
|
||||||
|
case QPMS_NORMALIZATION_TAYLOR:
|
||||||
|
qpms_trans_calculator_multipliers_B_Taylor(dest,m,n,mu,nu,qmax);
|
||||||
|
return 0;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
qpms_trans_calculator
|
qpms_trans_calculator
|
||||||
*qpms_trans_calculator_init (int lMax, qpms_normalization_t normalization) {
|
*qpms_trans_calculator_init (int lMax, qpms_normalization_t normalization) {
|
||||||
qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator));
|
qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator));
|
||||||
|
@ -224,14 +366,24 @@ qpms_trans_calculator
|
||||||
int m,n, mu, nu;
|
int m,n, mu, nu;
|
||||||
qpms_y2mn_p(y,&m,&n);
|
qpms_y2mn_p(y,&m,&n);
|
||||||
qpms_y2mn_p(yu,&mu,&nu);
|
qpms_y2mn_p(yu,&mu,&nu);
|
||||||
qmaxsum += (qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gaunt_q_max(-m,n,mu,nu));
|
qmaxsum += 1 + (
|
||||||
|
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
|
||||||
|
= gaunt_q_max(-m,n,mu,nu));
|
||||||
}
|
}
|
||||||
c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
||||||
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
// calculate multiplier beginnings
|
||||||
c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i];
|
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
||||||
// TODO here comes the filling of A_multipliers
|
c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i] + 1;
|
||||||
|
// calculate the multipliers
|
||||||
|
for(size_t y = 0; y < c->nelem; ++y)
|
||||||
|
for(size_t yu = 0; yu < c->nelem; ++yu) {
|
||||||
|
size_t i = y * c->nelem + yu;
|
||||||
|
int m, n, mu, nu;
|
||||||
|
qpms_y2mn_p(y, &m, &n);
|
||||||
|
qpms_y2mn_p(yu, &mu, &nu);
|
||||||
|
qpms_trans_calculator_multipliers_A(normalization,
|
||||||
|
c->A_multipliers[i], m, n, mu, nu, qmaxes[i]);
|
||||||
|
}
|
||||||
|
|
||||||
qmaxsum = 0;
|
qmaxsum = 0;
|
||||||
for(size_t y=0; y < c->nelem; y++)
|
for(size_t y=0; y < c->nelem; y++)
|
||||||
|
@ -239,16 +391,122 @@ qpms_trans_calculator
|
||||||
int m, n, mu, nu;
|
int m, n, mu, nu;
|
||||||
qpms_y2mn_p(y,&m,&n);
|
qpms_y2mn_p(y,&m,&n);
|
||||||
qpms_y2mn_p(yu,&mu,&nu);
|
qpms_y2mn_p(yu,&mu,&nu);
|
||||||
qmaxsum += (qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gaunt_q_max(-m,n+1,mu,nu));
|
qmaxsum += 1 + (
|
||||||
|
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
|
||||||
|
= gaunt_q_max(-m,n+1,mu,nu));
|
||||||
}
|
}
|
||||||
c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
||||||
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
// calculate multiplier beginnings
|
||||||
c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i];
|
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
||||||
|
c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i] + 1;
|
||||||
// TODO here comes the filling of B_multipliers
|
// calculate the multipliers
|
||||||
|
for(size_t y = 0; y < c->nelem; ++y)
|
||||||
|
for(size_t yu = 0; yu < c->nelem; ++yu) {
|
||||||
|
size_t i = y * c->nelem + yu;
|
||||||
|
int m, n, mu, nu;
|
||||||
|
qpms_y2mn_p(y, &m, &n);
|
||||||
|
qpms_y2mn_p(yu, &mu, &nu);
|
||||||
|
qpms_trans_calculator_multipliers_B(normalization,
|
||||||
|
c->B_multipliers[i], m, n, mu, nu, qmaxes[i]);
|
||||||
|
}
|
||||||
|
|
||||||
free(qmaxes);
|
free(qmaxes);
|
||||||
return c;
|
return c;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J,
|
||||||
|
complex double *bessel_buf, double *legendre_buf) {
|
||||||
|
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||||||
|
switch(c->normalization) {
|
||||||
|
case QPMS_NORMALIZATION_TAYLOR:
|
||||||
|
{
|
||||||
|
double costheta = cos(kdlj.theta);
|
||||||
|
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,legendre_buf)) abort();
|
||||||
|
if (qpms_sph_bessel_array(J, n+nu, kdlj.r, bessel_buf)) abort();
|
||||||
|
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||||||
|
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
|
||||||
|
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||||||
|
complex double sum = 0;
|
||||||
|
for(size_t q = 0; q <= qmax; ++q) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
double Pp = legendre_buf[gsl_sf_legendre_array_index(p, abs(mu-m))];
|
||||||
|
complex double zp = bessel_buf[p];
|
||||||
|
complex double multiplier = c->A_multipliers[i][q];
|
||||||
|
sum += Pp * zp * multiplier;
|
||||||
|
}
|
||||||
|
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
|
||||||
|
return sum * eimf;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J,
|
||||||
|
complex double *bessel_buf, double *legendre_buf) {
|
||||||
|
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||||||
|
switch(c->normalization) {
|
||||||
|
case QPMS_NORMALIZATION_TAYLOR:
|
||||||
|
{
|
||||||
|
double costheta = cos(kdlj.theta);
|
||||||
|
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||||||
|
costheta,-1,legendre_buf)) abort();
|
||||||
|
if (qpms_sph_bessel_array(J, n+nu+2, kdlj.r, bessel_buf)) abort();
|
||||||
|
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||||||
|
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - 1;
|
||||||
|
assert(qmax == gaunt_q_max(-m,n+1,mu,nu));
|
||||||
|
complex double sum = 0;
|
||||||
|
for(int q = 0; q <= qmax; ++q) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
double Pp_ = legendre_buf[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
|
||||||
|
complex double eimf = cexp(I * kdlj.phi);
|
||||||
|
complex double zp_ = bessel_buf[p+1];
|
||||||
|
complex double multiplier = c->B_multipliers[i][q];
|
||||||
|
sum += Pp_ * zp_ * multiplier;
|
||||||
|
}
|
||||||
|
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
|
||||||
|
return sum * eimf;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J) {
|
||||||
|
double leg[gsl_sf_legendre_array_n(n+nu)];
|
||||||
|
complex double bes[n+nu+1];
|
||||||
|
return qpms_trans_calculator_get_A_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
|
||||||
|
bes,leg);
|
||||||
|
}
|
||||||
|
|
||||||
|
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J) {
|
||||||
|
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||||||
|
complex double bes[n+nu+2];
|
||||||
|
return qpms_trans_calculator_get_B_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
|
||||||
|
bes,leg);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
|
||||||
|
complex double *Adest, complex double *Bdest,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J) {
|
||||||
|
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||||||
|
complex double bes[n+nu+2];
|
||||||
|
return qpms_trans_calculator_get_AB_buf(c,Adest,Bdest,
|
||||||
|
m,n,mu,nu,kdlj,r_ge_d,J,
|
||||||
|
bes,leg);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
|
@ -46,4 +46,18 @@ typedef struct qpms_trans_calculator {
|
||||||
qpms_trans_calculator *qpms_trans_calculator_init(int lMax, qpms_normalization_t nt);
|
qpms_trans_calculator *qpms_trans_calculator_init(int lMax, qpms_normalization_t nt);
|
||||||
void qpms_trans_calculator_free(qpms_trans_calculator *);
|
void qpms_trans_calculator_free(qpms_trans_calculator *);
|
||||||
|
|
||||||
|
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J);
|
||||||
|
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J);
|
||||||
|
#if 0
|
||||||
|
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
|
||||||
|
complex double *Adest, complex double *Bdest,
|
||||||
|
int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
#endif // QPMS_TRANSLATIONS_H
|
#endif // QPMS_TRANSLATIONS_H
|
||||||
|
|
Loading…
Reference in New Issue