Jdu spÃti
Former-commit-id: 0801757927c86093e3621a3cf1e803df21318c4f
This commit is contained in:
parent
5d858bfbeb
commit
81fdc50dc0
|
@ -469,6 +469,31 @@ with expansion coefficients
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Power transport
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Radiated power
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.3"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -519,20 +544,15 @@ reference "eq:plane wave expansion"
|
|||
For a system of many scatterers, Kristensson
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 9.2.2"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
derives only the scattering cross section formula
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right)=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left\Vert \outcoeffp p\right\Vert ^{2}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Let us derive the many-particle scattering and absorption cross sections.
|
||||
derives only the extinction cross section formula.
|
||||
Let us re-derive it together with the many-particle scattering and absorption
|
||||
cross sections.
|
||||
First, let us take a ball circumscribing all the scatterers at once,
|
||||
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\particle$
|
||||
\end_inset
|
||||
|
@ -577,6 +597,10 @@ reference "eq:extincion CS single"
|
|||
LatexCommand eqref
|
||||
reference "eq:absorption CS single"
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
|
||||
\end_inset
|
||||
|
||||
to obtain the cross sections.
|
||||
|
@ -654,13 +678,80 @@ noprefix "false"
|
|||
|
||||
properties, one has
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\rcoeffp{\square}^{\dagger}\outcoeffp{\square}=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}.
|
||||
\]
|
||||
\begin{align}
|
||||
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
|
||||
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
where only the last expression is suitable for numerical evaluation with
|
||||
truncated matrices, because the previous ones contain a translation operator
|
||||
right next to an incident field coefficient vector (see Sec.
|
||||
TODO).
|
||||
Similarly,
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
|
||||
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
Substituting
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:atf form multiparticle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:f squared form multiparticle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
into
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:scattering CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:absorption CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we get the many-particle expressions for extinction, scattering and absorption
|
||||
cross sections suitable for numerical evaluation:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}TODO,\label{eq:absorption CS multi}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue