WIP Ewald 1D in 3D notes: partial index fix etc.
Former-commit-id: 23b253c8179a8f62e05675fdf2fef26dc484790d
This commit is contained in:
parent
0c442ba745
commit
827499c3ff
|
@ -491,7 +491,7 @@ Let's do the polar integration next:
|
|||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
B_{l}^{m}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m}
|
||||
B_{l'}^{m'}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m'}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -503,13 +503,49 @@ Label
|
|||
; then
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
B_{l}^{m} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m}\\
|
||||
& =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\
|
||||
& =\left(-v\right)^{2k-m}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m}
|
||||
B_{l'}^{m'} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m'}\\
|
||||
& =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\
|
||||
& =\left(-v\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m'}
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
If we now perform the limit
|
||||
\begin_inset Formula $r\to0$
|
||||
\end_inset
|
||||
|
||||
and compare the radial parts (incl.
|
||||
those in
|
||||
\begin_inset Formula $u,v$
|
||||
\end_inset
|
||||
|
||||
) powers, the leading term indices will have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
l'\sim l+2a+2k-m'
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
so we can fix
|
||||
\begin_inset Formula $2a+2k-m'=l'-l$
|
||||
\end_inset
|
||||
|
||||
and get
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}=\begin{cases}
|
||||
0 & l'-l+m'\text{ odd}\\
|
||||
? & l'-l+m'\text{ even}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $ $
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
|
Loading…
Reference in New Issue