From 827499c3ff48ec7ee3c19cbf479b2cc4120378d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Mon, 15 Jun 2020 13:12:26 +0300 Subject: [PATCH] WIP Ewald 1D in 3D notes: partial index fix etc. Former-commit-id: 23b253c8179a8f62e05675fdf2fef26dc484790d --- notes/ewald_1D_in_3D.lyx | 44 ++++++++++++++++++++++++++++++++++++---- 1 file changed, 40 insertions(+), 4 deletions(-) diff --git a/notes/ewald_1D_in_3D.lyx b/notes/ewald_1D_in_3D.lyx index 5db7940..6dc67f8 100644 --- a/notes/ewald_1D_in_3D.lyx +++ b/notes/ewald_1D_in_3D.lyx @@ -491,7 +491,7 @@ Let's do the polar integration next: \begin_inset Formula \[ -B_{l}^{m}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m} +B_{l'}^{m'}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m'} \] \end_inset @@ -503,13 +503,49 @@ Label ; then \begin_inset Formula \begin{align*} -B_{l}^{m} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m}\\ - & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\ - & =\left(-v\right)^{2k-m}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l}^{-m}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m} +B_{l'}^{m'} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m'}\\ + & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\ + & =\left(-v\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m'} \end{align*} \end_inset +If we now perform the limit +\begin_inset Formula $r\to0$ +\end_inset + + and compare the radial parts (incl. + those in +\begin_inset Formula $u,v$ +\end_inset + +) powers, the leading term indices will have +\begin_inset Formula +\[ +l'\sim l+2a+2k-m' +\] + +\end_inset + +so we can fix +\begin_inset Formula $2a+2k-m'=l'-l$ +\end_inset + + and get +\begin_inset Formula +\[ +\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}=\begin{cases} +0 & l'-l+m'\text{ odd}\\ +? & l'-l+m'\text{ even} +\end{cases} +\] + +\end_inset + + +\begin_inset Formula $ $ +\end_inset + \end_layout