[dirty dipoles] few long-range hankel transforms rewriten from mathematica

Former-commit-id: 2554e2f670bd9e405210d3e2f62596b2295b0b7d
This commit is contained in:
Marek Nečada 2018-01-18 17:55:44 +00:00
parent 0e302d53a1
commit 85b881b1d6
1 changed files with 123 additions and 0 deletions

View File

@ -0,0 +1,123 @@
#include "bessels.h"
//#include "mdefs.h"
#include <complex.h>
#include <string.h>
#define SQ(x) ((x)*(x))
#define MAXQM 1
#define MAXN 2
#define MAXKAPPA 5
typedef complex double (*lrhankelspec)(double, double, double,
const complex double *,
const complex double *,
const complex double *,
const complex double *);
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
complex double fk5q1n0l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
}
complex double fk5q1n1l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
}
complex double fk5q1n2l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
double t = 2/(k*k);
return ( (e[0] - t*a[0] + t*d[0]*a[0])
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
+10 *(e[2] - t*a[2] + t*d[2]*a[2])
-10 *(e[3] - t*a[3] + t*d[3]*a[3])
+5 * (e[4] - t*a[4] + t*d[4]*a[4])
- (e[5] - t*a[5] + t*d[5]*a[5])
)/k0;
}
complex double fk5q2n0l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return 0; // FIXME
}
complex double fk5q2n1l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ( b[0]*a[0]
- 5 *b[1]*a[1]
+10 *b[2]*a[2]
-10 *b[3]*a[3]
+ 5 *b[4]*a[4]
- b[5]*a[5]
)/(k*k0*k0);
}
complex double fk5q2n2l(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ( b[0]*a[0]*a[0]
+ 5 * b[1]*a[1]*a[1]
-10 * b[2]*a[2]*a[2]
+10 * b[3]*a[3]*a[3]
- 5 * b[4]*a[4]*a[4]
+ b[5]*a[5]*a[5]
) / (k*k*k0*k0);
}
#if 0
complex double fk5q1n0s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return (p[0]-5*p[1]+10*p[2]-10*p[3]+5*p[4]-p[5])/k0;
}
complex double fk5q1n1s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ;
}
complex double fk5q1n2s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ;
}
complex double fk5q2n0s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ;
}
complex double fk5q2n1s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ;
}
complex double fk5q2n2s(double c, double k0, double k,
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
return ;
}
static lrhankelspec transfuns_n[MAXKAPPA+1][MAXQM+1][MAXN+1] = {
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
{TODO,TODO,TODO},{TODO,TODO,TODO},{TODO,TODO,TODO}
};
#endif
static lrhankelspec transfuns_f[MAXKAPPA+1][MAXQM+1][MAXN+1] = {
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
{{fk5q1n0l,fk5q1n1l,fk5q1n2l},{fk5q2n0l/*FIXME*/,fk5q2n1l,fk5q2n2l}}
};
void lrhankel_recpart_fill(complex double *target,
size_t maxn, size_t lrk_cutoff,
complex double *hct,
unsigned kappa, double c, double k0, double k)
{
memset(target, 0, (maxn+1)*sizeof(complex double));
complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1];
for (size_t sigma = 0; sigma <= kappa; ++sigma) {
a[sigma] = (sigma * c - I * k0);
b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma]));
d[sigma] = 1/b[sigma];
e[sigma] = d[sigma] / a[sigma];
}
}