[dirty dipoles] některé z vzorců funkční pro krátký dosah, jiné pro dlouhý
Former-commit-id: 9741093b8850a8cd6e92c20c4b6caf9fe8cb790d
This commit is contained in:
parent
85b881b1d6
commit
86610bd66d
|
@ -18,14 +18,17 @@ typedef complex double (*lrhankelspec)(double, double, double,
|
|||
|
||||
complex double fk5q1n0l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
// FIXME
|
||||
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
||||
}
|
||||
complex double fk5q1n1l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
// FIXME
|
||||
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
||||
}
|
||||
complex double fk5q1n2l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) { double t = 2/(k*k);
|
||||
// FIXME
|
||||
double t = 2/(k*k);
|
||||
return ( (e[0] - t*a[0] + t*d[0]*a[0])
|
||||
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
||||
|
@ -41,6 +44,7 @@ complex double fk5q2n0l(double c, double k0, double k,
|
|||
}
|
||||
complex double fk5q2n1l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
// FIXME
|
||||
return ( b[0]*a[0]
|
||||
- 5 *b[1]*a[1]
|
||||
+10 *b[2]*a[2]
|
||||
|
@ -60,6 +64,51 @@ complex double fk5q2n2l(double c, double k0, double k,
|
|||
) / (k*k*k0*k0);
|
||||
}
|
||||
|
||||
complex double fk5q1n0s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
||||
}
|
||||
complex double fk5q1n1s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
||||
}
|
||||
complex double fk5q1n2s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
double t = 2/(k*k);
|
||||
return ( (e[0] - t*a[0] + t*d[0]*a[0])
|
||||
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
||||
+10 *(e[2] - t*a[2] + t*d[2]*a[2])
|
||||
-10 *(e[3] - t*a[3] + t*d[3]*a[3])
|
||||
+5 * (e[4] - t*a[4] + t*d[4]*a[4])
|
||||
- (e[5] - t*a[5] + t*d[5]*a[5])
|
||||
)/k0;
|
||||
}
|
||||
complex double fk5q2n0l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
return 0; // FIXME
|
||||
}
|
||||
complex double fk5q2n1s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
return ( b[0]*a[0]
|
||||
- 5 *b[1]*a[1]
|
||||
+10 *b[2]*a[2]
|
||||
-10 *b[3]*a[3]
|
||||
+ 5 *b[4]*a[4]
|
||||
- b[5]*a[5]
|
||||
)/(k*k0*k0);
|
||||
}
|
||||
complex double fk5q2n2s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
// FIXME
|
||||
return ( b[0]*a[0]*a[0]
|
||||
+ 5 * b[1]*a[1]*a[1]
|
||||
-10 * b[2]*a[2]*a[2]
|
||||
+10 * b[3]*a[3]*a[3]
|
||||
- 5 * b[4]*a[4]*a[4]
|
||||
+ b[5]*a[5]*a[5]
|
||||
) / (k*k*k0*k0);
|
||||
}
|
||||
|
||||
#if 0
|
||||
complex double fk5q1n0s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
||||
|
@ -120,4 +169,33 @@ void lrhankel_recpart_fill(complex double *target,
|
|||
}
|
||||
}
|
||||
|
||||
#include <stdio.h>
|
||||
int main() {
|
||||
double k0 = 0.7;
|
||||
double c = 0.1324;
|
||||
double kmin = 0.000;
|
||||
double kmax = 20;
|
||||
double kstep = 0.001;
|
||||
size_t kappa = 5;
|
||||
|
||||
for (double k = kmin; k <= kmax; k += kstep) {
|
||||
printf("%f ", k);
|
||||
complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1];
|
||||
for (size_t sigma = 0; sigma <= kappa; ++sigma) {
|
||||
a[sigma] = (sigma * c - I * k0);
|
||||
b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma]));
|
||||
d[sigma] = 1/b[sigma];
|
||||
e[sigma] = d[sigma] / a[sigma];
|
||||
}
|
||||
for (size_t qm = 0; qm <= MAXQM; ++qm)
|
||||
for (size_t n = 0; n <= MAXN; ++n)
|
||||
if (!((qm==1)&&(n==0))){ // skip q==2, n=0 for now
|
||||
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
|
||||
complex double result =
|
||||
transfuns_f[kappa][qm][n](c,k0,k,a,b,d,e);
|
||||
printf("%.16e %.16e ", creal(result), cimag(result));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue