Infinite periodic system scattered field "bases"

This commit is contained in:
Marek Nečada 2020-07-23 07:23:47 +03:00
parent bf297c11c3
commit 868e603f1c
5 changed files with 147 additions and 5 deletions

View File

@ -5,7 +5,7 @@ import numpy as np
cdef extern from "ewald.h":
void ewald3_2_sigma_long_Delta(cdouble *target, double *err, int maxn, cdouble x, int xbranch, cdouble z)
void ewald3_2_sigma_long_Delta_series(cdouble *target, double *err, int maxn, cdouble x, int xbranch, cdouble z)
void ewald3_2_sigma_long_Delta_recurrent(cdouble *target, double *err, int maxn, cdouble x, int xbranch, cdouble z)
void ewald3_2_sigma_long_Delta_recurrent(cdouble *target, double *err, int maxn, cdouble x, int xbranch, cdouble z, bint bigimz)
int complex_gamma_inc_e(double a, cdouble x, int xbranch, qpms_csf_result *result)
def e32_Delta(int maxn, cdouble x, cdouble z, int xbranch = 0, get_err=True, method='auto'):
@ -17,7 +17,9 @@ def e32_Delta(int maxn, cdouble x, cdouble z, int xbranch = 0, get_err=True, met
err_np = np.empty((maxn+1,), order='C')
err_view = err_np
if method == 'recurrent':
ewald3_2_sigma_long_Delta_recurrent(&target_view[0], &err_view[0] if get_err else NULL, maxn, x, xbranch, z)
ewald3_2_sigma_long_Delta_recurrent(&target_view[0], &err_view[0] if get_err else NULL, maxn, x, xbranch, z, False)
if method == 'recurrent_bigimz':
ewald3_2_sigma_long_Delta_recurrent(&target_view[0], &err_view[0] if get_err else NULL, maxn, x, xbranch, z, True)
elif method == 'series':
ewald3_2_sigma_long_Delta_series(&target_view[0], &err_view[0] if get_err else NULL, maxn, x, xbranch, z)
else:

View File

@ -1036,8 +1036,8 @@ cdef class _ScatteringSystemAtOmegaK:
Returns
-------
array_like of complex, with the same shape as `evalpos`
Electric field at the positions given in `evalpos`.
ndarray of complex, with the same shape as `evalpos`
Electric field at the positions given in `evalpos`, in cartesian coordinates.
"""
if(btyp != QPMS_HANKEL_PLUS):
raise NotImplementedError("Only first kind Bessel function-based fields are supported")
@ -1063,6 +1063,51 @@ cdef class _ScatteringSystemAtOmegaK:
results[i,2] = res.z
return results.reshape(evalpos.shape)
def scattered_field_basis(self, evalpos, btyp=QPMS_HANKEL_PLUS):
# TODO examples
"""Evaluate scattered field "basis" (periodic system)
This function enables the evaluation of "scattered" fields
generated by the system for many different excitation
coefficients vectors, without the expensive re-evaluation of the respective
translation operators for each excitation coefficient vector.
Parameters
----------
evalpos: array_like of floats and shape (..., 3)
Evaluation points in cartesian coordinates.
Returns
-------
ndarray of complex, with the shape `evalpos.shape[:-1] + (self.fecv_size, 3)`
"Basis" fields at the positions given in `evalpos`, in cartesian coordinates.
"""
if(btyp != QPMS_HANKEL_PLUS):
raise NotImplementedError("Only first kind Bessel function-based fields are supported")
cdef qpms_bessel_t btyp_c = BesselType(btyp)
cdef Py_ssize_t fecv_size = self.fecv_size
evalpos = np.array(evalpos, dtype=float, copy=False)
if evalpos.shape[-1] != 3:
raise ValueError("Last dimension of evalpos has to be 3")
cdef np.ndarray[double,ndim=2] evalpos_a = evalpos.reshape(-1,3)
cdef np.ndarray[complex, ndim=3] results = np.empty((evalpos_a.shape[0], fecv_size, 3), dtype=complex)
cdef ccart3_t *res
res = <ccart3_t *> malloc(fecv_size*sizeof(ccart3_t))
cdef cart3_t pos
cdef Py_ssize_t i, j
with nogil, wraparound(False), parallel():
for i in prange(evalpos_a.shape[0]):
pos.x = evalpos_a[i,0]
pos.y = evalpos_a[i,1]
pos.z = evalpos_a[i,2]
qpms_scatsyswk_scattered_field_basis(res, &self.sswk, btyp_c, pos)
for j in range(fecv_size):
results[i,j,0] = res[j].x
results[i,j,1] = res[j].y
results[i,j,2] = res[j].z
free(res)
return results.reshape(evalpos.shape[:-1] + (self.fecv_size, 3))
property fecv_size:
def __get__(self): return self.ssw_pyref.ss_pyref.fecv_size

View File

@ -705,6 +705,8 @@ cdef extern from "scatsystem.h":
const cdouble *f_excitation_vector_full, cart3_t where) nogil
ccart3_t qpms_scatsyswk_scattered_E(const qpms_scatsys_at_omega_k_t *sswk, qpms_bessel_t btyp,
const cdouble *f_excitation_vector_full, cart3_t where) nogil
qpms_errno_t qpms_scatsyswk_scattered_field_basis(ccart3_t *target, const qpms_scatsys_at_omega_k_t *sswk,
qpms_bessel_t btyp, cart3_t where) nogil
double qpms_ss_adjusted_eta(const qpms_scatsys_t *ss, cdouble wavenumber, const double *wavevector) nogil

View File

@ -2186,6 +2186,86 @@ ccart3_t qpms_scatsyswk_scattered_E(const qpms_scatsys_at_omega_k_t *sswk,
return res;
}
qpms_errno_t qpms_scatsyswk_scattered_field_basis(
ccart3_t *target,
const qpms_scatsys_at_omega_k_t *sswk,
const qpms_bessel_t btyp,
const cart3_t where
) {
QPMS_UNTESTED;
if (btyp != QPMS_HANKEL_PLUS)
QPMS_NOT_IMPLEMENTED("Only scattered field with first kind Hankel functions currently implemented.");
const qpms_scatsys_t *ss = sswk->ssw->ss;
if (ss->lattice_dimension != 2)
QPMS_NOT_IMPLEMENTED("Only 2D-periodic lattices implemented");
//ccart3_t res = {0,0,0};
//ccart3_t res_kc = {0,0,0}; // kahan sum compensation
static const int dipspecn = 3; // We have three basis vectors
// bspec containing only electric dipoles
const qpms_vswf_set_spec_t dipspec = {
.n = dipspecn,
.ilist = (qpms_uvswfi_t[]){
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, -1, 1),
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, 0, 1),
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, +1, 1),
},
.lMax=1, .lMax_M=0, .lMax_N=1, .lMax_L=-1,
.capacity=0,
.norm = ss->c->normalisation,
};
ccart3_t regdipoles_0[dipspecn]; {
const sph_t origin_sph = {.r = 0, .theta = M_PI_2, .phi=0}; // Should work with any theta/phi (TESTWORTHY)
csphvec_t regdipoles_0_sph[dipspecn];
QPMS_ENSURE_SUCCESS(qpms_uvswf_fill(regdipoles_0_sph, &dipspec,
sph2csph(origin_sph), QPMS_BESSEL_REGULAR));
for(int i = 0; i < dipspecn; ++i)
regdipoles_0[i] = csphvec2ccart(regdipoles_0_sph[i], origin_sph);
}
complex double *s; // Translation matrix
QPMS_CRASHING_MALLOC(s, ss->max_bspecn * sizeof(*s) * dipspec.n);
memset(target, 0, ss->fecv_size * sizeof(*target));
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) {
const qpms_vswf_set_spec_t *bspec = qpms_ss_bspec_pi(ss, pi);
const cart3_t particle_pos = ss->p[pi].pos;
//const complex double *particle_cv = cvf + ss->fecv_pstarts[pi];
const cart3_t origin_cart = {0, 0, 0};
QPMS_ASSERT(sswk->k[2] == 0); // At least not implemented now
QPMS_ASSERT(ss->per.lattice_basis[0].z == 0);
QPMS_ASSERT(ss->per.lattice_basis[1].z == 0);
// Same choices as in qpms_ss_ppair_W32xy; TODO make it more dynamic
const double maxR = sqrt(ss->per.unitcell_volume) * 64;
const double maxK = 2048 * 2 * M_PI / maxR;
QPMS_ENSURE_SUCCESS(qpms_trans_calculator_get_trans_array_e32(
ss->c, s, NULL,
&dipspec, 1, bspec, dipspecn,
sswk->eta, sswk->ssw->wavenumber,
cart3xy2cart2(ss->per.lattice_basis[0]), cart3xy2cart2(ss->per.lattice_basis[1]),
cart2_from_double_array(sswk->k), cart3_substract(where, particle_pos) /*CHECKSIGN*/,
maxR, maxK));
for(size_t i = 0; i < bspec->n; ++i)
for(size_t j = 0; j < dipspecn; ++j){
target[ss->fecv_pstarts[pi] + i] = ccart3_add(target[ss->fecv_pstarts[pi] + i],
ccart3_scale(s[dipspecn*i+j], regdipoles_0[j]));
//ccart3_t summand = ccart3_scale(particle_cv[i] * s[dipspecn*i+j], regdipoles_0[j]);
//ckahanadd(&(res.x), &(res_kc.x), summand.x);
//ckahanadd(&(res.y), &(res_kc.y), summand.y);
//ckahanadd(&(res.z), &(res_kc.z), summand.z);
}
}
free(s);
return QPMS_SUCCESS;
}
#if 0
ccart3_t qpms_scatsys_scattered_E_irrep(const qpms_scatsys_t *ss,
qpms_iri_t iri, const complex double *cvr, cart3_t where) {

View File

@ -785,11 +785,24 @@ ccart3_t qpms_scatsysw_scattered_E__alt(
*/
ccart3_t qpms_scatsyswk_scattered_E(
const qpms_scatsys_at_omega_k_t *sswk,
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
qpms_bessel_t typ, ///< Bessel function kind to use (only QPMS_HANKEL_PLUS is currently supported).
const complex double *scatcoeff_full, ///< Full vector of the scattered field coefficients \f$ \wckcout \f$.
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
);
/// Evaluates "scattered" field basis functions in a periodic system.
/**
*
* \see qpms_uvswf_fill() evaluates a set of VSWF basis functions (for finite systems).
*/
qpms_errno_t qpms_scatsyswk_scattered_field_basis(
ccart3_t *target, ///< Target array of size sswk->ssw->ss->fecv_size
const qpms_scatsys_at_omega_k_t *sswk,
qpms_bessel_t typ, ///< Bessel function kind to use (only QPMS_HANKEL_PLUS is currently supponted).
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the basis is evaluated.
);
/// Adjusted Ewadl parameter to avoid high-frequency breakdown.
// TODO DOC
double qpms_ss_adjusted_eta(const qpms_scatsys_t *ss, complex double wavenumber, const double wavevector[3]);