Continue writing on Ewald summation.
Former-commit-id: a01eb920f0e49ce30fd29b8694a614a4af9993b1
This commit is contained in:
parent
dc633c6d9a
commit
890dbc3e76
216
ewald.lyx
216
ewald.lyx
|
@ -51,7 +51,7 @@
|
|||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\paperfontsize 10
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Accelerating lattice mode calculations with T-matrix method"
|
||||
|
@ -65,8 +65,8 @@
|
|||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\papersize a5paper
|
||||
\use_geometry true
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
|
@ -90,6 +90,10 @@
|
|||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\leftmargin 2cm
|
||||
\topmargin 2cm
|
||||
\rightmargin 2cm
|
||||
\bottommargin 2cm
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
|
@ -234,26 +238,85 @@ Now suppose that the scatterers constitute an infinite lattice
|
|||
|
||||
Due to the periodicity, we can write
|
||||
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $T_{\vect aα}=T_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In order to find lattice modes, we search for solutions with zero RHS
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and we assume periodic solution
|
||||
\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
|
||||
\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
, yielding
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Therefore, in order to solve the modes, we need to compute the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
lattice Fourier transform
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
of the translation operator,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Multidimensional Dirac comb
|
||||
Computing the Fourier sum of the translation operator
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The problem evaluating
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W definition"
|
||||
|
||||
\end_inset
|
||||
|
||||
is the asymptotic behaviour of the translation operator,
|
||||
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\end_inset
|
||||
|
||||
that makes the convergence of the sum quite problematic for any
|
||||
\begin_inset Formula $d>1$
|
||||
\end_inset
|
||||
|
||||
-dimensional lattice.
|
||||
In electrostatics, one can solve this with problem with Ewald summation.
|
||||
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
||||
space, will perhaps decay fast in the Fourier space.
|
||||
I use the same idea here, but things will be somehow harder than in electrostat
|
||||
ics.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
(Appendix) Multidimensional Dirac comb
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -286,9 +349,9 @@ Fourier series representation
|
|||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}
|
||||
\]
|
||||
\begin{equation}
|
||||
Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -313,9 +376,9 @@ With unitary ordinary frequency Ft., i.e.
|
|||
|
||||
we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}
|
||||
\]
|
||||
\begin{equation}
|
||||
\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -439,16 +502,41 @@ From the scaling property of delta function,
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
From the book:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Applying both sides to a test function that is one at the origin, we get
|
||||
|
||||
\begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
|
||||
\end_inset
|
||||
|
||||
, and hence
|
||||
SRSLY?, and hence
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
|
||||
\]
|
||||
\begin{equation}
|
||||
\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).\label{eq:Dirac comb factorisation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -459,9 +547,103 @@ Applying both sides to a test function that is one at the origin, we get
|
|||
Fourier series representation
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Utilising the Fourier series for 1D Dirac comb
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:1D Dirac comb Fourier series"
|
||||
|
||||
\end_inset
|
||||
|
||||
and the factorisation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Dirac comb factorisation"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we get
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\dc{\basis u}(\vect x) & = & \prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \sum_{n_{j}=-\infty}^{\infty}e^{2\pi in_{i}\vect x\cdot\rec{\vect u_{i}}}\\
|
||||
& = & \left(\prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \right)\sum_{\vect n\in\mathbb{Z}^{d}}e^{2\pi i\vect x\cdot\sum_{k=1}^{d}n_{k}\rec{\vect u_{k}}}.
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Fourier transform
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uoft{\dc A}\left(\vect{\xi}\right)=\dc{}^{(d)}\left(A^{T}\vect{\xi}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
So, from the stretch theorem
|
||||
\begin_inset Formula $\uoft{(f(A\vect x))}=\frac{1}{\left|\det A\right|}\uoft{f\left(A^{-T}\vect{\xi}\right)}=\left|\det A^{-T}\right|\uoft{f\left(A^{-T}\vect{\xi}\right)}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
From
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Dirac comb factorisation"
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:1D Dirac comb Ft ordinary freq"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uoft{\dc{\basis u}}(\vect{\xi})=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
||||
|
|
Loading…
Reference in New Issue