Continue writing on Ewald summation.

Former-commit-id: a01eb920f0e49ce30fd29b8694a614a4af9993b1
This commit is contained in:
Marek Nečada 2017-08-03 13:09:54 +00:00
parent dc633c6d9a
commit 890dbc3e76
1 changed files with 199 additions and 17 deletions

216
ewald.lyx
View File

@ -51,7 +51,7 @@
\output_sync 0 \output_sync 0
\bibtex_command default \bibtex_command default
\index_command default \index_command default
\paperfontsize default \paperfontsize 10
\spacing single \spacing single
\use_hyperref true \use_hyperref true
\pdf_title "Accelerating lattice mode calculations with T-matrix method" \pdf_title "Accelerating lattice mode calculations with T-matrix method"
@ -65,8 +65,8 @@
\pdf_colorlinks false \pdf_colorlinks false
\pdf_backref false \pdf_backref false
\pdf_pdfusetitle true \pdf_pdfusetitle true
\papersize default \papersize a5paper
\use_geometry false \use_geometry true
\use_package amsmath 1 \use_package amsmath 1
\use_package amssymb 1 \use_package amssymb 1
\use_package cancel 1 \use_package cancel 1
@ -90,6 +90,10 @@
\shortcut idx \shortcut idx
\color #008000 \color #008000
\end_index \end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3 \secnumdepth 3
\tocdepth 3 \tocdepth 3
\paragraph_separation indent \paragraph_separation indent
@ -234,26 +238,85 @@ Now suppose that the scatterers constitute an infinite lattice
Due to the periodicity, we can write Due to the periodicity, we can write
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$ \begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
\end_inset
and
\begin_inset Formula $T_{\vect aα}=T_{\alpha}$
\end_inset \end_inset
. .
In order to find lattice modes, we search for solutions with zero RHS In order to find lattice modes, we search for solutions with zero RHS
\begin_inset Formula \begin_inset Formula
\[ \[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
\] \]
\end_inset \end_inset
and we assume periodic solution and we assume periodic solution
\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$ \begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
\end_inset \end_inset
. , yielding
\begin_inset Formula
\begin{eqnarray*}
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
\end{eqnarray*}
\end_inset
Therefore, in order to solve the modes, we need to compute the
\begin_inset Quotes eld
\end_inset
lattice Fourier transform
\begin_inset Quotes erd
\end_inset
of the translation operator,
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
\end{equation}
\end_inset
\end_layout \end_layout
\begin_layout Section \begin_layout Section
Multidimensional Dirac comb Computing the Fourier sum of the translation operator
\end_layout
\begin_layout Standard
The problem evaluating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
is the asymptotic behaviour of the translation operator,
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
\end_inset
that makes the convergence of the sum quite problematic for any
\begin_inset Formula $d>1$
\end_inset
-dimensional lattice.
In electrostatics, one can solve this with problem with Ewald summation.
Its basic idea is that if what asymptoticaly decays poorly in the direct
space, will perhaps decay fast in the Fourier space.
I use the same idea here, but things will be somehow harder than in electrostat
ics.
\end_layout
\begin_layout Section
(Appendix) Multidimensional Dirac comb
\end_layout \end_layout
\begin_layout Subsection \begin_layout Subsection
@ -286,9 +349,9 @@ Fourier series representation
\begin_layout Standard \begin_layout Standard
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T} Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
\] \end{equation}
\end_inset \end_inset
@ -313,9 +376,9 @@ With unitary ordinary frequency Ft., i.e.
we have we have
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT} \uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
\] \end{equation}
\end_inset \end_inset
@ -439,16 +502,41 @@ From the scaling property of delta function,
\end_inset \end_inset
\end_layout
\begin_layout Standard
From the book:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
\]
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
Applying both sides to a test function that is one at the origin, we get Applying both sides to a test function that is one at the origin, we get
\begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $ \begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
\end_inset \end_inset
, and hence SRSLY?, and hence
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right). \dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).\label{eq:Dirac comb factorisation}
\] \end{equation}
\end_inset
\end_layout
\end_inset \end_inset
@ -459,9 +547,103 @@ Applying both sides to a test function that is one at the origin, we get
Fourier series representation Fourier series representation
\end_layout \end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Utilising the Fourier series for 1D Dirac comb
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1D Dirac comb Fourier series"
\end_inset
and the factorisation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb factorisation"
\end_inset
, we get
\begin_inset Formula
\begin{eqnarray*}
\dc{\basis u}(\vect x) & = & \prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \sum_{n_{j}=-\infty}^{\infty}e^{2\pi in_{i}\vect x\cdot\rec{\vect u_{i}}}\\
& = & \left(\prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \right)\sum_{\vect n\in\mathbb{Z}^{d}}e^{2\pi i\vect x\cdot\sum_{k=1}^{d}n_{k}\rec{\vect u_{k}}}.
\end{eqnarray*}
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection \begin_layout Subsubsection
Fourier transform Fourier transform
\end_layout \end_layout
\begin_layout Standard
From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\uoft{\dc A}\left(\vect{\xi}\right)=\dc{}^{(d)}\left(A^{T}\vect{\xi}\right).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
So, from the stretch theorem
\begin_inset Formula $\uoft{(f(A\vect x))}=\frac{1}{\left|\det A\right|}\uoft{f\left(A^{-T}\vect{\xi}\right)}=\left|\det A^{-T}\right|\uoft{f\left(A^{-T}\vect{\xi}\right)}$
\end_inset
\end_layout
\begin_layout Plain Layout
From
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Dirac comb factorisation"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1D Dirac comb Ft ordinary freq"
\end_inset
\begin_inset Formula
\[
\uoft{\dc{\basis u}}(\vect{\xi})=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
\end_inset
\end_layout
\end_inset
\end_layout
\end_body \end_body
\end_document \end_document