Orbit figure draft
Former-commit-id: 280b4d22178c05abe96fad4e455ca7136f2b7361
This commit is contained in:
parent
f65efdfe73
commit
8baf3a259c
|
@ -7,6 +7,7 @@
|
|||
\textclass article
|
||||
\begin_preamble
|
||||
\DeclareUnicodeCharacter{0428}{Ш }
|
||||
\usepackage{tikz}
|
||||
\end_preamble
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
\tikzstyle{orbit1}=[rectangle,draw=blue!50,fill=blue!20]
|
||||
\tikzstyle{orbit2}=[rectangle,draw=green!50,fill=green!20]
|
||||
\begin{tikzpicture}
|
||||
\draw (-4,0) -- (4,0);
|
||||
\draw (0,-2) -- (0,2);
|
||||
|
||||
\node (O) at (0,0) [circle, draw=red!50,fill=red!20] {O};
|
||||
|
||||
|
||||
\node (A) at (-3.0,0.5) [orbit1] {A};
|
||||
\node (B) at (3.0,0.5) [orbit1] {B};
|
||||
\node (C) at (3.0,-0.5) [orbit1] {C};
|
||||
\node (D) at (-3.0,-0.5) [orbit1] {D};
|
||||
|
||||
\node (E) at (0,-1) [orbit2] {E};
|
||||
\node (F) at (0,1) [orbit2] {F};
|
||||
|
||||
\draw [->] (A) to (B);
|
||||
\draw [->] (A) to [bend right=18] (C);
|
||||
\draw [->] (A) to (D);
|
||||
|
||||
\draw [<->] (E.east) to [bend right=30] (F.east);
|
||||
|
||||
|
||||
\end{tikzpicture}
|
|
@ -506,8 +506,6 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
, we have
|
||||
\lang english
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
|
@ -527,6 +525,18 @@ wide false
|
|||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand input
|
||||
filename "orbits.tex"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
|
@ -551,12 +561,12 @@ Scatterer orbits under
|
|||
\end_inset
|
||||
|
||||
lie on the
|
||||
\begin_inset Formula $xz$
|
||||
\begin_inset Formula $yz$
|
||||
\end_inset
|
||||
|
||||
plane, hence the corresponding reflection maps each of them to itself,
|
||||
but the
|
||||
\begin_inset Formula $yz$
|
||||
\begin_inset Formula $xz$
|
||||
\end_inset
|
||||
|
||||
reflection (or the
|
||||
|
@ -685,8 +695,6 @@ status open
|
|||
\end_inset
|
||||
|
||||
one has
|
||||
\lang english
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)\right.+\label{eq:rotated E field expansion around outside origin-1}\\
|
||||
|
@ -726,8 +734,6 @@ noprefix "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeff & \mapsto J\left(g\right)a,\nonumber \\
|
||||
|
@ -741,8 +747,6 @@ noprefix "false"
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
The matrices
|
||||
\begin_inset Formula $D\left(g\right)$
|
||||
\end_inset
|
||||
|
@ -1184,8 +1188,6 @@ name "Phase factor illustration"
|
|||
\begin_layout Standard
|
||||
More rigorous analysis can be found e.g.
|
||||
in
|
||||
\lang english
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "chapters 10–11"
|
||||
|
@ -1211,14 +1213,10 @@ In the group-theoretical terminology, blablabla little groups blabla bla...
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
A general overview of utilizing group theory to find lattice modes at high-symme
|
||||
try points of the Brillouin zone can be found e.g.
|
||||
in
|
||||
|
@ -1234,8 +1232,6 @@ literal "true"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
We analyse the symmetries of the system in the same VSWF representation
|
||||
as used in the
|
||||
\begin_inset Formula $T$
|
||||
|
@ -1389,8 +1385,6 @@ where
|
|||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
Each mode at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue