Dudom; towards general 2D ewald sums

Former-commit-id: 3e626dd16692d93f4c958ac129b4d9ec91adc07d
This commit is contained in:
Marek Nečada 2018-12-10 18:47:27 +02:00
parent 105cf3e993
commit 8ce2956911
2 changed files with 371 additions and 2 deletions

View File

@ -135,7 +135,7 @@ int ewald3_sigma_short(
const qpms_ewald32_constants_t *c, const qpms_ewald32_constants_t *c,
const double eta, const double k, const double eta, const double k,
const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same
PGenSph *pgen_R, const bool pgen_generates_shifted_points PGen *pgen_R, const bool pgen_generates_shifted_points
/* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift, /* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift,
* so the function assumes that the generated points correspond to the unshifted Bravais lattice, * so the function assumes that the generated points correspond to the unshifted Bravais lattice,
* and adds particle_shift to the generated points before calculations. * and adds particle_shift to the generated points before calculations.
@ -153,7 +153,7 @@ int ewald3_sigma_long( // calls ewald3_21_sigma_long or ewald3_3_sigma_long, dep
const double eta, const double k, const double eta, const double k,
const double unitcell_volume /* with the corresponding lattice dimensionality */, const double unitcell_volume /* with the corresponding lattice dimensionality */,
const LatticeDimensionality latdim, const LatticeDimensionality latdim,
PGenSph *pgen_K, const bool pgen_generates_shifted_points PGen *pgen_K, const bool pgen_generates_shifted_points
/* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift, /* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift,
* so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice, * so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice,
* and adds beta to the generated points before calculations. * and adds beta to the generated points before calculations.

369
tests/ewaldshift_3g.c Normal file
View File

@ -0,0 +1,369 @@
// c99 -ggdb -Wall -I ../ ewaldshift2.c ../qpms/ewald.c ../qpms/ewaldsf.c ../qpms/lattices2d.c -lgsl -lm -lblas
// implementation of the [LT(4.16)] test
#include <math.h>
#define M_SQRTPI 1.7724538509055160272981674833411452
#define M_SQRT3 1.7320508075688772935274463415058724
#include <qpms/ewald.h>
#include <qpms/tiny_inlines.h>
#include <qpms/indexing.h>
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <gsl/gsl_sf_legendre.h>
typedef struct ewaldtest_triang_params {
qpms_l_t lMax;
point2d beta;
point2d particle_shift;
double k;
double a;
double eta;
double maxR;
double maxK;
double csphase;
TriangularLatticeOrientation orientation;
} ewaldtest_triang_params;
typedef struct ewaldtest_triang_results {
ewaldtest_triang_params p;
complex double *sigmas_short,
*sigmas_long,
sigma0,
*sigmas_total;
double *err_sigmas_short,
*err_sigmas_long,
err_sigma0,
*err_sigmas_total;
complex double *regsigmas_416;
} ewaldtest_triang_results;
/*
const double a = 582e-9;
const double inv_a = 4*M_PI/a/M_SQRT3;
const double Klen = 4*M_PI/a/3;
*/
#define AA (582.e-9)
#define INV_A (4*M_PI/AA/M_SQRT3)
#define KLEN (4*M_PI/AA/3)
ewaldtest_triang_params paramslist[] = {
// lMax, beta, shift, k, a, eta, maxR, maxK, csphase, orientation
/*
{ 2, {2.7, 1}, {0.5,0.1325}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {2.7, 1}, {0.5,0.1325}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {2.7, 1}, {0.5,0.1325}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {2.7, 1}, {0.5,0.1325}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.1325}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.1325}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.1325}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.1325}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 1}, {0.5,0.}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
*/
//
{ 3, {0,4198609.6394310603}, {0,0}, 11255786.828366444, 9.9766126515967311e-07, 29088820.866572164, 20*9.9766126515967311e-07, 20*7272205.21664304, 1., TRIANGULAR_VERTICAL},
{ 3, {0,4198609.6394310603}, {0,0}, 11255786.828366444, 9.9766126515967311e-07, 0.18*29088820.866572164, 20*9.9766126515967311e-07, 20*7272205.21664304, 1., TRIANGULAR_VERTICAL},
{ 3, {0,4198609.6394310603}, {0,0}, 11255786.828366444, 9.9766126515967311e-07, 0.13*29088820.866572164, 20*9.9766126515967311e-07, 20*7272205.21664304, 1., TRIANGULAR_VERTICAL},
{ 3, {0,4198609.6394310603}, {0,0}, 11255786.828366444, 9.9766126515967311e-07, 0.07*29088820.866572164, 20*9.9766126515967311e-07, 20*7272205.21664304, 1., TRIANGULAR_VERTICAL},
{ 3, {0,4198609.6394310603}, {0,0}, 11255786.828366444, 9.9766126515967311e-07, 0.03*29088820.866572164, 20*9.9766126515967311e-07, 20*7272205.21664304, 1., TRIANGULAR_VERTICAL},
// { 3, {0,KLEN}, {0,0}, 2.62 * 4 * M_PI/3/AA, AA, 0.5 / AA, 20*AA, 160/AA, 1., TRIANGULAR_VERTICAL},
{ 3, {0,KLEN}, {0,0}, 2.62 * 4 * M_PI/3/AA, AA, 2.5 / AA, 20*AA, 160/AA, 1., TRIANGULAR_VERTICAL},
{ 3, {0,KLEN}, {0,0}, 2.62 * 4 * M_PI/3/AA, AA, 4.5 / AA, 20*AA, 160/AA, 1., TRIANGULAR_VERTICAL},
{ 3, {0,KLEN}, {0,0}, 2.62 * 4 * M_PI/3/AA, AA, 6.5 / AA, 20*AA, 160/AA, 1., TRIANGULAR_VERTICAL},
{ 3, {0,KLEN}, {0,0}, 2.62 * 4 * M_PI/3/AA, AA, 8.5 / AA, 20*AA, 160/AA, 1., TRIANGULAR_VERTICAL},
/*
{ 3, {0,Klen}, {0,0}, 2.62 * 4 * M_PI/3/a, a, 0.5 / a, 20*a, 2*M_PI*160/a, 1., TRIANGULAR_VERTICAL},
{ 3, {0,Klen}, {0,0}, 2.62 * 4 * M_PI/3/a, a, 2.5 / a, 20*a, 2*M_PI*160/a, 1., TRIANGULAR_VERTICAL},
{ 3, {0,Klen}, {0,0}, 2.62 * 4 * M_PI/3/a, a, 4.5 / a, 20*a, 2*M_PI*160/a, 1., TRIANGULAR_VERTICAL},
{ 3, {0,Klen}, {0,0}, 2.62 * 4 * M_PI/3/a, a, 6.5 / a, 20*a, 2*M_PI*160/a, 1., TRIANGULAR_VERTICAL},
{ 3, {0,Klen}, {0,0}, 2.62 * 4 * M_PI/3/a, a, 8.5 / a, 20*a, 2*M_PI*160/a, 1., TRIANGULAR_VERTICAL},
*/
{ 2, {1.1, 2.1}, {0.5,0.1325}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 2.1}, {0.5,0.1325}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 2.1}, {0.5,0.1325}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1, 2.1}, {0.5,0.1325}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
/*
{ 2, {0, 3.1}, {0.5,0}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0.5,0}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0.5,0}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0.5,0}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 1.1}, {0.5,0}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 1.1}, {0.5,0}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 1.1}, {0.5,0}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 1.1}, {0.5,0}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1,0}, {0,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1,0}, {0,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1,0}, {0,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1,0}, {0,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1,0}, {0,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
*/
{ 2, {3.1*0.5,-3.1*0.8}, {0.8,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.8,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.8,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.8,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.8,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.8,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.8,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.8,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
// Poloviční posun oproti přodchozímu
{ 2, {3.1*0.5,-3.1*0.8}, {0.4,0.25}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.4,0.25}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.4,0.25}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {3.1*0.5,-3.1*0.8}, {0.4,0.25}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.4,0.25}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.4,0.25}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.4,0.25}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {1.1*0.5,-1.1*0.8}, {0.4,0.25}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
// miniposun
{ 3, {3.1*0.5,-3.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {0.004,0.0025}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {3.1*0.5,-3.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 3, {1.1*0.5,-1.1*0.8}, {-0.004,-0.0025}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
/*
{ 2, {0, 3.1}, {0,0.5}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0,0.5}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0,0.5}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
{ 2, {0, 3.1}, {0,0.5}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
*/
// end:
// { 0, {0, 0}, 0, 0, 0, 0, 0, 0, 0}
};
void ewaldtest_triang_results_free(ewaldtest_triang_results *r) {
free(r->sigmas_short);
free(r->sigmas_long);
free(r->sigmas_total);
free(r->err_sigmas_long);
free(r->err_sigmas_total);
free(r->err_sigmas_short);
free(r->regsigmas_416);
free(r);
}
void dump_points2d_rordered(const points2d_rordered_t *ps, char *filename) {
FILE *f = fopen(filename, "w");
for (size_t i = 0; i < ps->nrs; ++i) {
fprintf(f, "# r = %.16g\n", ps->rs[i]);
for (ptrdiff_t j = ps->r_offsets[i]; j < ps->r_offsets[i+1]; ++j)
fprintf(f, "%.16g %.16g\n", ps->base[j].x, ps->base[j].y);
}
fclose(f);
}
static inline double san(double x) {
return fabs(x) < 1e-13 ? 0 : x;
}
ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p);
int main() {
gsl_set_error_handler(IgnoreUnderflowsGSLErrorHandler);
for (size_t i = 0; i < sizeof(paramslist)/sizeof(ewaldtest_triang_params); ++i) {
ewaldtest_triang_params p = paramslist[i];
ewaldtest_triang_results *r = ewaldtest_triang(p);
// TODO print per-test header here
printf("===============================\n");
printf("a = %g, K = %g, Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g, beta = (%g,%g), ps = (%g,%g), csphase = %g\n",
p.a, 4*M_PI/sqrt(3)/p.a, p.maxK, p.maxR, p.lMax, p.eta, p.k, p.beta.x, p.beta.y, p.particle_shift.x, p.particle_shift.y, p.csphase);
printf("sigma0: %.16g%+.16gj\n", creal(r->sigma0), cimag(r->sigma0));
for (qpms_l_t n = 0; n <= p.lMax; ++n) {
for (qpms_m_t m = -n; m <= n; ++m){
if ((m+n)%2) continue;
qpms_y_t y = qpms_mn2y_sc(m,n);
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
// y n m sigma_total (err), regsigmas_416 regsigmas_415_recon
printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
,
y, n, m, creal(san(r->sigmas_total[y])), san(cimag(r->sigmas_total[y])),
r->err_sigmas_total[y],
san(creal(r->sigmas_long[y])), san(cimag(r->sigmas_long[y])),
r->err_sigmas_long[y],
san(creal(r->sigmas_short[y])), san(cimag(r->sigmas_short[y])),
r->err_sigmas_short[y]
//san(creal(r->regsigmas_416[y])), san(cimag(r->regsigmas_416[y])),
//san(creal(r->sigmas_total[y]) + creal(r->sigmas_total[y_conj])),
//san(cimag(r->sigmas_total[y]) - cimag(r->sigmas_total[y_conj]))
);
}
}
ewaldtest_triang_results_free(r);
}
return 0;
}
int ewaldtest_counter = 0;
ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p) {
const double a = p.a; //const double a = p.h * sqrt(3);
const double A = sqrt(3) * a * a / 2.; // unit cell size
const double K_len = 4*M_PI/a/sqrt(3); // reciprocal vector length
ewaldtest_triang_results *results = malloc(sizeof(ewaldtest_triang_results));
results->p = p;
triangular_lattice_gen_t *Rlg = triangular_lattice_gen_init(a, p.orientation, true, 0); // N.B. orig is included
triangular_lattice_gen_extend_to_r(Rlg, p.maxR + a);
triangular_lattice_gen_t *Klg = triangular_lattice_gen_init(K_len, reverseTriangularLatticeOrientation(p.orientation), true, 0);
triangular_lattice_gen_extend_to_r(Klg, p.maxK + K_len);
point2d *Rpoints = Rlg->ps.base;
size_t nR = Rlg->ps.r_offsets[Rlg->ps.nrs];
if (fabs(p.particle_shift.x) ==0 && fabs(p.particle_shift.y) == 0) {
points2d_rordered_t Rpos = points2d_rordered_annulus(&(Rlg->ps), 0, false, INFINITY, false);
Rpoints = Rpos.base + Rpos.r_offsets[0];
nR = Rpos.r_offsets[Rpos.nrs] - Rpos.r_offsets[0];
}
point2d *Kpoints = Klg->ps.base;
size_t nK = Klg->ps.r_offsets[Klg->ps.nrs];
point2d particle_shift = p.particle_shift;
point2d minus_ps = {-particle_shift.x, -particle_shift.y};
point2d Rpoints_plus_shift[nR];
for(size_t i = 0; i < nR; ++i){
Rpoints_plus_shift[i].x = Rpoints[i].x - particle_shift.x;
Rpoints_plus_shift[i].y = Rpoints[i].y - particle_shift.y;
}
qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax);
results->sigmas_short = malloc(sizeof(complex double)*nelem_sc);
results->sigmas_long = malloc(sizeof(complex double)*nelem_sc);
results->sigmas_total = malloc(sizeof(complex double)*nelem_sc);
results->err_sigmas_short = malloc(sizeof(double)*nelem_sc);
results->err_sigmas_long = malloc(sizeof(double)*nelem_sc);
results->err_sigmas_total = malloc(sizeof(double)*nelem_sc);
qpms_ewald32_constants_t *c = qpms_ewald32_constants_init(p.lMax, p.csphase);
points2d_rordered_t *Kpoints_plus_beta = points2d_rordered_shift(&(Klg->ps), p.beta,
8*DBL_EPSILON, 8*DBL_EPSILON);
char filename[BUFSIZ];
sprintf(filename, "betalattice_%d.out", ewaldtest_counter);
dump_points2d_rordered(Kpoints_plus_beta, filename);
if (0!=ewald32_sigma_long_points_and_shift(results->sigmas_long,
results->err_sigmas_long, c, p.eta, p.k, A,
nK, Kpoints,
p.beta,
particle_shift /*minus_ps*/ ))
abort();
if (0!=ewald32_sigma_short_points_and_shift(
results->sigmas_short, results->err_sigmas_short, c,
p.eta, p.k,
nR, Rpoints, p.beta, particle_shift))
abort();
if (0!=ewald32_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k))
abort();
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y];
results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y];
}
results->sigmas_total[0] += results->sigma0;
results->err_sigmas_total[0] += results->err_sigma0;
// Now calculate the reference values [LT(4.16)]
results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double));
results->regsigmas_416[0] = -2 * c->legendre0[gsl_sf_legendre_array_index(0,0)];
{
double legendres[gsl_sf_legendre_array_n(p.lMax)];
points2d_rordered_t sel =
points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false);
if (0 != sel.nrs)
{
point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0];
size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0];
for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) {
point2d beta_pq = beta_pq_lessthan_k[i];
double rbeta_pq = cart2norm(beta_pq);
double arg_pq = atan2(beta_pq.y, beta_pq.x);
double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq);
if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,
p.lMax, denom/p.k, p.csphase, legendres) != 0)
abort();
for (qpms_y_t y = 0; y < nelem_sc; ++y) {
qpms_l_t n; qpms_m_t m;
qpms_y2mn_sc_p(y, &m, &n);
if ((m+n)%2 != 0)
continue;
complex double eimf = cexp(I*m*arg_pq);
results->regsigmas_416[y] +=
4*M_PI*ipow(n)/p.k/A
* eimf * legendres[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m)
/ denom;
}
}
}
}
points2d_rordered_free(Kpoints_plus_beta);
qpms_ewald32_constants_free(c);
triangular_lattice_gen_free(Klg);
triangular_lattice_gen_free(Rlg);
++ewaldtest_counter;
return results;
}