Correct flips for magnetic part. Some tests.
Former-commit-id: 998f4b8fa5b94447ae75220fbb43c0143d4083a5
This commit is contained in:
parent
4badc3f6cf
commit
8fb938961f
|
@ -915,7 +915,19 @@ def xflip_yy(lmax):
|
|||
elems[b_in:e_in,b_in:e_in] = np.eye(2*l+1)[::-1,:]
|
||||
b_in = e_in
|
||||
return elems
|
||||
|
||||
|
||||
def xflip_tyy(lmax):
|
||||
fl_yy = xflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
def xflip_tyty(lmax):
|
||||
fl_yy = xflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
|
||||
fl_tyty[0,:,0,:] = fl_yy
|
||||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
def yflip_yy(lmax):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -927,6 +939,18 @@ def yflip_yy(lmax):
|
|||
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
|
||||
return elems
|
||||
|
||||
def yflip_tyy(lmax):
|
||||
fl_yy = yflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
def yflip_tyty(lmax):
|
||||
fl_yy = yflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
|
||||
fl_tyty[0,:,0,:] = fl_yy
|
||||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
def zflip_yy(lmax):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -942,6 +966,18 @@ def zflip_yy(lmax):
|
|||
b_in = e_in
|
||||
return elems
|
||||
|
||||
def zflip_tyy(lmax):
|
||||
fl_yy = zflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
def zflip_tyty(lmax):
|
||||
fl_yy = zflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
|
||||
fl_tyty[0,:,0,:] = fl_yy
|
||||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
def parity_yy(lmax):
|
||||
"""
|
||||
Parity operator (flip in x,y,z)
|
||||
|
@ -1294,6 +1330,7 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
return ab
|
||||
returnlist = [ab]
|
||||
if (return_pq_0):
|
||||
pq_0_arr.shape = ab.shape
|
||||
returnlist.append(pq_0_arr)
|
||||
if (return_pq):
|
||||
warnings.warn("return_pq not implemented, ignoring")
|
||||
|
|
|
@ -19,26 +19,26 @@ from numpy import newaxis as ň
|
|||
import warnings
|
||||
|
||||
# Some constants go here.
|
||||
|
||||
# The "maximum" argument of the Bessel's functions, i.e. maximum wave number times the distance,
|
||||
# for the "locally strongly varying fields"
|
||||
maxx = 3
|
||||
# The "maximum" argument of the Bessel's function for reexpansion of the waves into regular waves
|
||||
# in another center
|
||||
maxxd = 2000
|
||||
lMax = 50 # To which order we decompose the waves
|
||||
|
||||
lengthOrdersOfMagnitude = [2.**i for i in range(-15,10)]
|
||||
nsamples = 4 # (frequency, direction, polarisation) samples per order of magnitude and test
|
||||
npoints = 40 # points to evaluate per sample
|
||||
rtol = 1e-7 # relative required precision
|
||||
atol = 1. # absolute tolerance, does not really play a role
|
||||
lengthOrdersOfMagnitude = [2.**i for i in range(-15,10,2)]
|
||||
|
||||
class PlaneWaveDecompositionTests(unittest.TestCase):
|
||||
"""
|
||||
covers plane_pq_y and vswf_yr1
|
||||
"""
|
||||
def testRandomInc(self):
|
||||
# The "maximum" argument of the Bessel's functions, i.e. maximum wave number times the distance,
|
||||
# for the "locally strongly varying fields"
|
||||
maxx = 10
|
||||
rfailtol = 0.01 # how much of the randomized test will be tolerated
|
||||
lMax = 80 # To which order we decompose the waves
|
||||
rtol = 1e-5 # relative required precision
|
||||
atol = 1. # absolute tolerance, does not really play a role
|
||||
nsamples = 4 # (frequency, direction, polarisation) samples per order of magnitude and test
|
||||
npoints = 15 # points to evaluate per sample
|
||||
|
||||
|
||||
failcounter = 0
|
||||
passcounter = 0
|
||||
for oom in lengthOrdersOfMagnitude:
|
||||
k = np.random.randn(nsamples, 3) / oom
|
||||
ksiz = np.linalg.norm(k, axis=-1)
|
||||
|
@ -52,27 +52,102 @@ class PlaneWaveDecompositionTests(unittest.TestCase):
|
|||
sph = qpms.cart2sph(ksiz[s]*testpoints[i])
|
||||
M̃_y, Ñ_y = qpms.vswf_yr1(sph, lMax, 1)
|
||||
planewave_2_p = -1j*qpms.sph_loccart2cart(np.dot(p,Ñ_y)+np.dot(q,M̃_y),sph)
|
||||
self.assertTrue(np.allclose(planewave_2_p, planewave_1[i], rtol=rtol, atol=atol))
|
||||
# if not np.allclose(planewave_2_p, planewave_1[i], rtol=rtol, atol=atol):
|
||||
# warnings.warn('Planewave expansion test not passed; r = '
|
||||
# +str(testpoints[i])+', k = '+str(k[s])
|
||||
# +', E_0 = '+str(E_0[s])+', (original) E = '
|
||||
# +str(planewave_1[i])+', (reexpanded) E = '
|
||||
# +str(planewave_2_p)
|
||||
# +', x = '+str(np.dot(testpoints[i],k[s]))
|
||||
# +'; distance = '
|
||||
# +str(np.linalg.norm(planewave_1[i]-planewave_2_p))
|
||||
# +', required relative precision = '
|
||||
# +str(relprecision)+'.')
|
||||
return
|
||||
#self.assertTrue(np.allclose(planewave_2_p, planewave_1[i], rtol=rtol, atol=atol))
|
||||
if not np.allclose(planewave_2_p, planewave_1[i], rtol=rtol, atol=atol):
|
||||
False and warnings.warn('Planewave expansion test not passed; r = '
|
||||
+str(testpoints[i])+', k = '+str(k[s])
|
||||
+', E_0 = '+str(E_0[s])+', (original) E = '
|
||||
+str(planewave_1[i])+', (reexpanded) E = '
|
||||
+str(planewave_2_p)
|
||||
+', x = '+str(np.dot(testpoints[i],k[s]))
|
||||
+'; distance = '
|
||||
+str(np.linalg.norm(planewave_1[i]-planewave_2_p))
|
||||
+', required relative precision = '
|
||||
+str(rtol)+'.')
|
||||
failcounter += 1
|
||||
else:
|
||||
passcounter += 1
|
||||
self.assertLess(failcounter / (failcounter + passcounter), rfailtol,
|
||||
'%d / %d (%.2e) randomized numerical tests failed (tolerance %.2e)'
|
||||
% (failcounter, failcounter + passcounter,
|
||||
failcounter / (failcounter + passcounter), rfailtol))
|
||||
return
|
||||
|
||||
def testCornerCases(self):
|
||||
pass
|
||||
|
||||
|
||||
class SphericalWaveTranslationTests(unittest.TestCase):
|
||||
def testRandom1to1(self):
|
||||
# The "maximum" argument of the Bessel's functions, i.e. maximum wave number times the distance,
|
||||
# for the "locally strongly varying fields"
|
||||
maxx = 10
|
||||
rfailtol = 0.01 # how much of the randomized test fail proportion will be tolerated
|
||||
lMax = 50 # To which order we decompose the waves
|
||||
lMax_outgoing = 4 # To which order we try the outgoing waves
|
||||
rtol = 1e-5 # relative required precision
|
||||
atol = 1. # absolute tolerance, does not really play a role
|
||||
nsamples = 4 # frequency samples per order of magnitude and test
|
||||
npoints = 15 # points to evaluate per frequency and center
|
||||
|
||||
ncentres = 3 # number of spherical coordinate centres between which the translations are to be made
|
||||
maxxd = 2000 # the center position standard deviation
|
||||
|
||||
def sometest(self):
|
||||
failcounter = 0
|
||||
passcounter = 0
|
||||
my, ny = qpms.get_mn_y(lMax)
|
||||
nelem_full = len(my)
|
||||
nelem_out = lMax_outgoing * (lMax_outgoing + 2)
|
||||
for oom in lengthOrdersOfMagnitude:
|
||||
centres = oom * maxxd * np.random.randn(ncentres, 3)
|
||||
ksizs = np.random.randn(nsamples)
|
||||
for ksiz in ksizs:
|
||||
for i in range(ncentres): # "source"
|
||||
Rs = centres[i]
|
||||
testr = oom * maxx * np.random.randn(npoints, 3)
|
||||
for j in range(ncentres): # "destination"
|
||||
if j == i:
|
||||
continue
|
||||
Rd = centres[j]
|
||||
shift = Rd - Rs
|
||||
shift_sph = qpms.cart2sph(shift)
|
||||
shift_kr = ksiz * shift_sph[0]
|
||||
shift_theta = shift_sph[1]
|
||||
shift_phi = shift_sph[2]
|
||||
|
||||
A_yd_ys = np.empty((nelem_full,nelem_out), dtype = np.complex_)
|
||||
B_yd_ys = np.empty((nelem_full,nelem_out), dtype = np.complex_)
|
||||
for yd in range(nelem_full):
|
||||
for ys in range(nelem_out):
|
||||
A_yd_ys[yd, ys] = qpms.Ã(my[yd],ny[yd],my[ys],ny[ys],shift_kr, shift_theta, shift_phi, True, 1)
|
||||
B_yd_ys[yd, ys] = qpms.B̃(my[yd],ny[yd],my[ys],ny[ys],shift_kr, shift_phi, shift_phi, True, 1)
|
||||
for r in testr:
|
||||
sph_ssys = qpms.cart2sph(r+Rd-Rs)
|
||||
M_ssys, N_ssys = qpms.vswf_yr1(np.array([ksiz * sph_ssys[0], sph_ssys[1], sph_ssys[2]]), lMax_outgoing, J=1)
|
||||
sph_dsys = qpms.cart2sph(r)
|
||||
M_dsys, N_dsys = qpms.vswf_yr1(np.array([ksiz * sph_dsys[0], sph_dsys[1], sph_dsys[2]]), lMax, J=1)
|
||||
for ys in range(nelem_out):
|
||||
# Electrical waves
|
||||
E_1 = -1j*qpms.sph_loccart2cart(N_ssys[ys], sph_ssys)
|
||||
E_2 = -1j*qpms.sph_loccart2cart(np.dot(A_yd_ys[:,ys],N_dsys)+np.dot(B_yd_ys[:,ys],M_dsys),sph_dsys)
|
||||
if not np.allclose(E_1, E_2, rtol=rtol, atol=atol):
|
||||
failcounter += 1
|
||||
else:
|
||||
passcounter += 1
|
||||
# Magnetic waves
|
||||
E_1 = -1j*qpms.sph_loccart2cart(M_ssys[ys], sph_ssys)
|
||||
E_2 = -1j*qpms.sph_loccart2cart(np.dot(A_yd_ys[:,ys],M_dsys)+np.dot(B_yd_ys[:,ys],N_dsys),sph_dsys)
|
||||
if not np.allclose(E_1, E_2, rtol=rtol, atol=atol):
|
||||
failcounter += 1
|
||||
else:
|
||||
passcounter += 1
|
||||
self.assertLess(failcounter / (failcounter + passcounter), rfailtol,
|
||||
'%d / %d (%.2e) randomized numerical tests failed (tolerance %.2e)'
|
||||
% (failcounter, failcounter + passcounter,
|
||||
failcounter / (failcounter + passcounter), rfailtol))
|
||||
return
|
||||
|
||||
def testRandom3to1(self):
|
||||
pass
|
||||
|
||||
def main():
|
||||
|
|
Loading…
Reference in New Issue