diff --git a/dipdip-dirty/bessels.c b/dipdip-dirty/bessels.c index d1d08de..3d8b778 100644 --- a/dipdip-dirty/bessels.c +++ b/dipdip-dirty/bessels.c @@ -4,7 +4,7 @@ #include #include -static const double ln2 = 0.69314718055994531; +static const double ln2 = 0.693147180559945309417; // general; gives an array of size xxx with TODODESC @@ -41,7 +41,7 @@ complex double * hankelcoefftable_init(size_t maxn) { void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn, size_t lrk_cutoff, complex double *hct, unsigned kappa, double c, double x) { - memset(lrt, 0, (maxn+1)*sizeof(complex double)); + if (lrt) memset(lrt, 0, (maxn+1)*sizeof(complex double)); memset(srt, 0, (maxn+1)*sizeof(complex double)); double regularisator = pow(1. - exp(-c * x), (double) kappa); double antiregularisator = 1. - regularisator; @@ -51,13 +51,13 @@ void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn, for(size_t n = k; n <= maxn; ++n) srt[n] += ((kNormal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{"rho", "[", + RowBox[{"r_", ",", "c_", ",", "kap_"}], "]"}], ":=", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "c"}], " ", "r"}], "]"}]}], ")"}], "^", "kap"}]}], "\n", + RowBox[{ + RowBox[{"s", "[", + RowBox[{"r_", ",", "k0_", ",", "q_"}], "]"}], ":=", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"I", " ", "k0", " ", "r"}], "]"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", " ", "r"}], ")"}], "^", + RowBox[{"(", + RowBox[{"-", "q"}], ")"}]}]}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"integrand", "[", + RowBox[{ + "r_", ",", "k_", ",", "k0_", ",", "c_", ",", "kap_", ",", "q_", ",", + "n_"}], "]"}], ":=", + RowBox[{ + RowBox[{"rho", "[", + RowBox[{"r", ",", "c", ",", "kap"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"r", ",", "k0", ",", "q"}], "]"}], " ", "r", " ", + RowBox[{"BesselJ", "[", + RowBox[{"n", ",", + RowBox[{"k", " ", "r"}]}], "]"}]}]}], + "\[IndentingNewLine]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Lsum30", "[", + RowBox[{"kap_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"(", + RowBox[{"1", "+", "sig"}], ")"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"k", "*", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", "^", "2"}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "^", "2"}]}], + ")"}], "/", + RowBox[{"k", "^", "2"}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "*", + RowBox[{"ArcSin", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "/", "k"}], + "]"}]}]}], ")"}], "*", + RowBox[{"Binomial", "[", + RowBox[{"kap", ",", "sig"}], "]"}]}], ")"}], "/", + RowBox[{"k0", "^", "3"}]}], ",", + RowBox[{"{", + RowBox[{"sig", ",", "0", ",", "kap"}], "}"}]}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Nint30", "[", + RowBox[{"kap_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"integrand", "[", + RowBox[{ + "r", ",", "k", ",", "k0", ",", "c", ",", "kap", ",", "3", ",", "0"}], + "]"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Lsum30relerror", "[", + RowBox[{"kappa_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"integrand", "[", + RowBox[{ + "r", ",", "k", ",", "k0", ",", "c", ",", "kappa", ",", "3", ",", + "0"}], "]"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "Infinity"}], "}"}]}], "]"}], "-", + RowBox[{"Lsum30", "[", + RowBox[{"kappa", ",", "c", ",", "k0", ",", "k"}], "]"}]}], ")"}], "/", + + RowBox[{"Lsum30", "[", + RowBox[{"kappa", ",", "c", ",", "k0", ",", "k"}], "]"}]}], + "]"}]}]}], "Input", + CellChangeTimes->{{3.725113471451489*^9, 3.725113518541342*^9}, + 3.72511361142743*^9, {3.7251136649255037`*^9, 3.725113665100748*^9}, + 3.725113940122211*^9, {3.72511397606431*^9, 3.725114004686063*^9}, { + 3.7251140520462313`*^9, 3.725114052164033*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Lsum30relerror", "[", + RowBox[{"6", ",", "0.1", ",", "1", ",", "1.1"}], "]"}]], "Input", + CellChangeTimes->{{3.7251136200622*^9, 3.7251136322203493`*^9}}], + +Cell[BoxData["6.70650792232631`*^-12"], "Output", + CellChangeTimes->{3.725113638647744*^9, 3.7251136705456123`*^9, + 3.725113945893931*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Lsum30relerror", "[", + RowBox[{"2", ",", "0.1", ",", "1.8", ",", "0.7"}], "]"}]], "Input", + CellChangeTimes->{{3.725113688094325*^9, 3.72511371089297*^9}, { + 3.725113953012788*^9, 3.725113957835388*^9}}], + +Cell[BoxData["0.9975419499206724`"], "Output", + CellChangeTimes->{{3.725113689091052*^9, 3.725113711464198*^9}, { + 3.72511394863025*^9, 3.725113958377577*^9}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Lsum30", "[", + RowBox[{"2", ",", "0.1", ",", "1.8", ",", "0.7"}], "]"}]], "Input", + CellChangeTimes->{{3.7251140122908077`*^9, 3.725114027355405*^9}, { + 3.7251140719110518`*^9, 3.72511408374263*^9}}], + +Cell[BoxData[ + RowBox[{"0.00006715230791048965`", "\[VeryThinSpace]", "+", + RowBox[{"0.41841799501968396`", " ", "\[ImaginaryI]"}]}]], "Output", + CellChangeTimes->{ + 3.7251140276493177`*^9, {3.725114072392956*^9, 3.7251140841186037`*^9}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Nint30", "[", + RowBox[{"2", ",", "0.1", ",", "1.8", ",", "0.7"}], "]"}]], "Input", + CellChangeTimes->{{3.72511403724128*^9, 3.725114037839789*^9}, { + 3.725114078108095*^9, 3.725114082476921*^9}}], + +Cell[BoxData[ + RowBox[{"0.00006715230791033052`", "\[VeryThinSpace]", "+", + RowBox[{"0.0010284870104265479`", " ", "\[ImaginaryI]"}]}]], "Output", + CellChangeTimes->{{3.72511403840551*^9, 3.725114086040118*^9}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"(", + RowBox[{"1", "+", "sig"}], ")"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"k", "*", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", "^", "2"}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "^", "2"}]}], + ")"}], "/", + RowBox[{"k", "^", "2"}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "*", + RowBox[{"ArcSin", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "/", "k"}], + "]"}]}]}], ")"}], "*", + RowBox[{"Binomial", "[", + RowBox[{"kap", ",", "sig"}], "]"}]}], ")"}], "/", + RowBox[{"k0", "^", "3"}]}], ",", + RowBox[{"{", + RowBox[{"sig", ",", "0", ",", "kap"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.725113829800209*^9, 3.725113829800631*^9}}], + +Cell[BoxData[ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"sig", "=", "0"}], "kap"], + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], + RowBox[{"1", "+", "sig"}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"k", " ", + SqrtBox[ + FractionBox[ + RowBox[{ + SuperscriptBox["k", "2"], "-", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"\[ImaginaryI]", " ", "c", " ", "sig"}]}], ")"}], "2"]}], + SuperscriptBox["k", "2"]]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"\[ImaginaryI]", " ", "c", " ", "sig"}]}], ")"}], " ", + RowBox[{"ArcSin", "[", + FractionBox[ + RowBox[{"k0", "+", + RowBox[{"\[ImaginaryI]", " ", "c", " ", "sig"}]}], "k"], "]"}]}]}], + ")"}], " ", + RowBox[{"Binomial", "[", + RowBox[{"kap", ",", "sig"}], "]"}]}], + SuperscriptBox["k0", "3"]]}]], "Output", + CellChangeTimes->{3.7251138695080853`*^9}] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Lsum30alt", "[", + RowBox[{"kap_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"(", + RowBox[{"1", "+", "sig"}], ")"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"k", "*", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", "^", "2"}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "^", "2"}]}], + ")"}], "/", + RowBox[{"k", "^", "2"}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"ArcSin", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"k0", "+", + RowBox[{"I", "*", "c", "*", "sig"}]}], ")"}], "/", "k"}], + "]"}], "+", + RowBox[{"I", "*", "Pi"}]}], ")"}]}]}], ")"}], "*", + RowBox[{"Binomial", "[", + RowBox[{"kap", ",", "sig"}], "]"}]}], ")"}], "/", + RowBox[{"k0", "^", "3"}]}], ",", + RowBox[{"{", + RowBox[{"sig", ",", "0", ",", "kap"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.725114285602276*^9, 3.725114340572805*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Lsum30alt", "[", + RowBox[{"2", ",", "0.1", ",", "1.8", ",", "0.7"}], "]"}]], "Input", + CellChangeTimes->{{3.7251143362072897`*^9, 3.725114336572289*^9}}], + +Cell[BoxData[ + RowBox[{"0.00006715230791043414`", "\[VeryThinSpace]", "+", + RowBox[{"0.4184179950196838`", " ", "\[ImaginaryI]"}]}]], "Output", + CellChangeTimes->{3.725114342830419*^9}] +}, Open ]] +}, +WindowSize->{1280, 758}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"10.0 for Linux x86 (64-bit) (December 4, 2014)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 3847, 115, 231, "Input"], +Cell[CellGroupData[{ +Cell[4430, 139, 180, 3, 32, "Input"], +Cell[4613, 144, 140, 2, 34, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[4790, 151, 230, 4, 32, "Input"], +Cell[5023, 157, 160, 2, 32, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[5220, 164, 226, 4, 32, "Input"], +Cell[5449, 170, 241, 4, 32, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[5727, 179, 222, 4, 32, "Input"], +Cell[5952, 185, 213, 3, 32, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[6202, 193, 1309, 40, 55, "Input"], +Cell[7514, 235, 1072, 34, 94, "Output"] +}, Open ]], +Cell[8601, 272, 1567, 46, 99, "Input"], +Cell[CellGroupData[{ +Cell[10193, 322, 179, 3, 32, "Input"], +Cell[10375, 327, 187, 3, 32, "Output"] +}, Open ]] +} +] +*) + +(* End of internal cache information *) diff --git a/notes/ewald-calculations-apr1.lyx b/notes/ewald-calculations-apr1.lyx index ca02b36..ce4a8e7 100644 --- a/notes/ewald-calculations-apr1.lyx +++ b/notes/ewald-calculations-apr1.lyx @@ -291,6 +291,87 @@ extra . \end_layout +\begin_layout Standard + +\lang english +According to Mathematica, the right sum with +\begin_inset Formula $s$ +\end_inset + + going from 0 +\begin_inset Formula +\begin{equation} +\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\label{eq:right sum} +\end{equation} + +\end_inset + +can be written as (mathematica output) +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout + +\lang english +(2^(2 - q)*k^(-3 + q)*((-I)*k0 + c*sig)*Gamma[(3 + n - q)/2]*Hypergeometric2F1[3 +/2 - n/2 - q/2, 3/2 + n/2 - q/2, 3/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(-1 + + n + q)/2]) +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\frac{2^{2-q}k^{-3+q}\left(-ik_{0}+c\sigma\right)\text{Γ}\left(\frac{3+n-q}{2}\right)\hgf\left(\begin{array}{c} +\frac{3-n-q}{2},\frac{3+n-q}{2}\\ +3/2 +\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{-1+n+q}{2}\right)} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\lang english +Similarly, the left sum +\begin_inset Formula +\begin{equation} +\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\right)\label{eq:left sum} +\end{equation} + +\end_inset + +gives (mathematica output) +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout + +\lang english +(2^(1 - q)*k^(-2 + q)*Gamma[(2 + n - q)/2]*Hypergeometric2F1[1 - n/2 - q/2, + 1 + n/2 - q/2, 1/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(n + q)/2]) +\end_layout + +\end_inset + + and is equal to +\begin_inset Formula +\[ +\frac{2^{1-q}k^{-2+q}\Gamma\left(\frac{2+n-q}{2}\right)\hgf\left(\begin{array}{c} +\frac{2-n-q}{2},\frac{2+n-q}{2}\\ +1/2 +\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{n+q}{2}\right)} +\] + +\end_inset + +. +\end_layout + \begin_layout Subparagraph \lang english @@ -393,12 +474,83 @@ so \begin_inset Formula \begin{eqnarray*} \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\ - & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right) +(Hq3n1) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right) \end{eqnarray*} \end_inset +\series bold +což je prej blbě (zjisti proč – blbě opsáno nebo nesprávná větev logaritmu?); +\series default + správný výsledek je (mathematica kód: +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout +- Sum[(-1)^sig Binomial[kap, sig] (((-I)*k0 + c*sig)*(k0*Sqrt[1 - (k0 + + I*c*sig)^2/k^2] + I*c*sig*Sqrt[1 - (k0 + I*c*sig)^2/k^2] + k*ArcSin[(k0 + + I*c*sig)/k]))/(2*k0^3*(k0 + I*c*sig)) , {sig, 0, kap}] +\end_layout + +\end_inset + + nebo FullSimplify +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout +(((-I)*k0 + c*sig)*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] - I*k*ArcSin[(k0 + + I*c*sig)/k])/(2*k0^3) +\end_layout + +\end_inset + +; snad jsem to tentokrát neopsal blbě) +\begin_inset Formula +\begin{eqnarray*} +\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\left(k_{0}\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+ic\sigma\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+k\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)\right)}{2k_{0}^{3}\left(k_{0}+ic\sigma\right)}\\ +\mbox{(f.simpl.)} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subparagraph +Special case +\begin_inset Formula $q=3,n=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +Mathematica řiká po fullsimplify zhruba toto +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi +n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}] +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +\pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}} +\end{eqnarray*} + +\end_inset + + +\begin_inset Formula $\kappa\ge2$ +\end_inset + + \end_layout \begin_layout Paragraph diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 7a32112..1a97fc1 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -2700,6 +2700,79 @@ for \end_inset +\end_layout + +\begin_layout Paragraph +Case +\begin_inset Formula $n=1,q=3$ +\end_inset + + +\end_layout + +\begin_layout Standard +As shown in separate note (check whether copied correctly) +\begin_inset Formula +\[ +\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}} +\] + +\end_inset + +for +\begin_inset Formula $\kappa\ge3$ +\end_inset + +, +\begin_inset Formula $k>k_{0}?$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Case +\begin_inset Formula $n=0,q=3$ +\end_inset + + +\end_layout + +\begin_layout Standard +As shown in separate note (check whether copied correctly) +\lang finnish + +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout + +\lang finnish +Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi +n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}] +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +\pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}} +\end{eqnarray*} + +\end_inset + + +\lang english +for +\begin_inset Formula $\kappa\ge2$ +\end_inset + +, +\begin_inset Formula $k>k_{0}?$ +\end_inset + + \end_layout \begin_layout Standard @@ -2964,7 +3037,7 @@ where the spherical Hankel transform 2) \begin_inset Formula \[ -\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). \] \end_inset @@ -2974,7 +3047,7 @@ Using this convention, the inverse spherical Hankel transform is given by 3) \begin_inset Formula \[ -g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), \] \end_inset @@ -2987,7 +3060,7 @@ so it is not unitary. An unitary convention would look like this: \begin_inset Formula \begin{equation} -\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \end{equation} \end_inset @@ -3040,9 +3113,10 @@ where the Hankel transform of order is defined as \begin_inset Formula -\begin{equation} -\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} -\end{equation} +\begin{eqnarray} +\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ + & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{\left|m\right|}(kr)r +\end{eqnarray} \end_inset