Infinite systems basic motivation
Former-commit-id: 8a214e3408eabdd5f874d6f31f677cce2d738a02
This commit is contained in:
parent
50651df99b
commit
914389d609
|
@ -97,6 +97,30 @@
|
|||
Infinite periodic systems
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Although large finite systems are where MSTMM excels the most, there are
|
||||
several reasons that makes its extension to infinite lattices (where periodic
|
||||
boundary conditions might be applied) desirable as well.
|
||||
Other methods might be already fast enough, but MSTMM will be faster in
|
||||
most cases in which there is enough spacing between the neighboring particles.
|
||||
MSTMM works well with any space group symmetry the system might have (as
|
||||
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
|
||||
which makes e.g.
|
||||
application of group theory in mode analysis quite easy.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Topology anoyne?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
And finally, having a method that handles well both infinite and large
|
||||
finite system gives a possibility to study finite-size effects in periodic
|
||||
scatterer arrays.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Formulation of the problem
|
||||
\end_layout
|
||||
|
@ -192,9 +216,9 @@ and we assume periodic solution
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect0α\leftarrow\vect bβ})A_{\vect0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect0\beta}\left(\vect k\right) & = & 0.
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
@ -210,7 +234,7 @@ lattice Fourier transform
|
|||
of the translation operator,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -231,7 +255,7 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
is the asymptotic behaviour of the translation operator,
|
||||
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\begin_inset Formula $S_{\vect0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\end_inset
|
||||
|
||||
that makes the convergence of the sum quite problematic for any
|
||||
|
@ -271,7 +295,7 @@ reference "eq:W definition"
|
|||
|
||||
in terms of integral with a delta comb
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\newcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -327,7 +351,7 @@ translation operator for spherical waves originating in
|
|||
\end_inset
|
||||
|
||||
is in fact a function of a single 3d argument,
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -341,7 +365,7 @@ reference "eq:W integral"
|
|||
can be rewritten as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0))\left(\vect k\right)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -366,10 +390,10 @@ reference "eq:Dirac comb uaFt"
|
|||
for the Fourier transform of Dirac comb)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -471,8 +495,8 @@ reference "eq:W sum in reciprocal space"
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue