From 91e2ae9e4d1ed0024491d3c3b79ac2dfdfec1da2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Wed, 31 Jul 2019 17:52:58 +0300 Subject: [PATCH] Fix typos, add bibliography. Former-commit-id: 625bcf54b52f5866c9c120b7f4fb35f50b6c9ac4 --- lepaper/T-matrix paper.bib | 66 ++++++++++++++++++++++++++++++++++++++ lepaper/finite.lyx | 40 +++++++++++------------ lepaper/infinite.lyx | 8 ++--- 3 files changed, 90 insertions(+), 24 deletions(-) diff --git a/lepaper/T-matrix paper.bib b/lepaper/T-matrix paper.bib index 83e8da2..a5c7b6f 100644 --- a/lepaper/T-matrix paper.bib +++ b/lepaper/T-matrix paper.bib @@ -10,6 +10,14 @@ file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/HES6WJTP/(Wiley science paperback series) Craig F. Bohren, Donald R. Huffman-Absorption and scattering of light by small particles-Wiley-VCH (1998).djvu} } +@misc{SCUFF2, + title = {{{SCUFF}}-{{EM}}}, + url = {http://homerreid.dyndns.org/scuff-EM/}, + author = {Reid, Homer}, + year = {2018}, + note = {http://github.com/homerreid/scuff-EM} +} + @article{xu_calculation_1996, title = {Calculation of the {{Addition Coefficients}} in {{Electromagnetic Multisphere}}-{{Scattering Theory}}}, volume = {127}, @@ -284,6 +292,46 @@ file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/YMRZHBY4/Linton ja Thompson - 2009 - One- and two-dimensional lattice sums for the thre.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/Z8CFQ6S9/S0021999108005962.html} } +@book{olver_nist_2010, + edition = {1 Pap/Cdr}, + title = {{{NIST}} Handbook of Mathematical Functions}, + isbn = {978-0-521-14063-8}, + urldate = {2018-08-20}, + publisher = {{Cambridge University Press}}, + url = {http://gen.lib.rus.ec/book/index.php?md5=7750A842DAAE07EBE30D597EB1352408}, + author = {Olver, Frank W. J. and Lozier, Daniel W. and Boisvert, Ronald F. and Clark, Charles W.}, + year = {2010}, + file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZJ5LBQ8W/Olver ym. - 2010 - NIST handbook of mathematical functions.pdf} +} + +@article{NIST:DLMF, + title = {{{NIST Digital Library}} of {{Mathematical Functions}}}, + url = {http://dlmf.nist.gov/}, + key = {DLMF}, + note = {F.~W.~J. Olver, A.~B. Olde Daalhuis, D.~W. Lozier, B.~I. Schneider, R.~F. Boisvert, C.~W. Clark, B.~R. Miller and B.~V. Saunders, eds.} +} + +@article{reid_efficient_2015, + archivePrefix = {arXiv}, + eprinttype = {arxiv}, + eprint = {1307.2966}, + title = {Efficient {{Computation}} of {{Power}}, {{Force}}, and {{Torque}} in {{BEM Scattering Calculations}}}, + volume = {63}, + issn = {0018-926X, 1558-2221}, + abstract = {We present concise, computationally efficient formulas for several quantities of interest -- including absorbed and scattered power, optical force (radiation pressure), and torque -- in scattering calculations performed using the boundary-element method (BEM) [also known as the method of moments (MOM)]. Our formulas compute the quantities of interest \textbackslash{}textit\{directly\} from the BEM surface currents with no need ever to compute the scattered electromagnetic fields. We derive our new formulas and demonstrate their effectiveness by computing power, force, and torque in a number of example geometries. Free, open-source software implementations of our formulas are available for download online.}, + number = {8}, + urldate = {2018-09-23}, + journal = {IEEE Transactions on Antennas and Propagation}, + doi = {10.1109/TAP.2015.2438393}, + url = {http://arxiv.org/abs/1307.2966}, + author = {Reid, M. T. Homer and Johnson, Steven G.}, + month = aug, + year = {2015}, + keywords = {Physics - Classical Physics,Physics - Computational Physics}, + pages = {3588-3598}, + file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/I2DXTKUF/Reid ja Johnson - 2015 - Efficient Computation of Power, Force, and Torque .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/LG7AVZDH/1307.html} +} + @article{guo_lasing_2019, title = {Lasing at \${{K}}\$ {{Points}} of a {{Honeycomb Plasmonic Lattice}}}, volume = {122}, @@ -332,6 +380,24 @@ file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZRYZ4KLK/Kristensson - 2016 - Scattering of Electromagnetic Waves by Obstacles.pdf} } +@article{ganesh_convergence_2012, + title = {Convergence Analysis with Parameter Estimates for a Reduced Basis Acoustic Scattering {{T}}-Matrix Method}, + volume = {32}, + issn = {0272-4979}, + abstract = {Abstract. The celebrated truncated T-matrix method for wave propagation models belongs to a class of the reduced basis methods (RBMs), with the parameters bein}, + language = {en}, + number = {4}, + urldate = {2019-07-03}, + journal = {IMA J Numer Anal}, + doi = {10.1093/imanum/drr041}, + url = {https://academic.oup.com/imajna/article/32/4/1348/654510}, + author = {Ganesh, M. and Hawkins, S. C. and Hiptmair, R.}, + month = oct, + year = {2012}, + pages = {1348-1374}, + file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/2CRM9IEU/ganesh2012.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/KLKJBTZU/Ganesh ym. - 2012 - Convergence analysis with parameter estimates for .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/N5H8B7SF/654510.html} +} + @book{chew_fast_2000, series = {Artech {{House Antennas}} and {{Propagation Library}}}, title = {Fast and {{Efficient Algorithms}} in {{Computational Electromagnetics}}}, diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index 55de130..b2fcf41 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -443,7 +443,7 @@ The regular VSWFs constitute a basis for solutions of the Helmholtz equation \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Helmholtz eq" plural "false" caps "false" @@ -589,7 +589,7 @@ ing appropriate expansion coefficients of the driving field into \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" @@ -602,7 +602,7 @@ noprefix "false" \begin_inset Formula $\outcoefftlm{\tau}lm$ \end_inset - are related to the induced electric ( + are the effective induced electric ( \begin_inset Formula $\tau=1$ \end_inset @@ -756,7 +756,7 @@ For convenience, let us introduce a short-hand matrix notation for the expansion indices explicitly; so for example, eq. \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" @@ -798,7 +798,7 @@ literal "true" have expansion as in \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:E field expansion" plural "false" caps "false" @@ -1722,7 +1722,7 @@ reference "eq:absorption CS single" -th particle reads according to \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:regular vswf translation" plural "false" caps "false" @@ -1745,7 +1745,7 @@ whereas the contributions of fields scattered from each particle expanded is, according to \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:singular vswf translation" plural "false" caps "false" @@ -1763,7 +1763,7 @@ noprefix "false" Using the unitarity \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:regular translation unitarity" plural "false" caps "false" @@ -1773,7 +1773,7 @@ noprefix "false" and composition \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:regular translation composition" plural "false" caps "false" @@ -1805,7 +1805,7 @@ where only the last expression is suitable for numerical evaluation with Substituting \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:atf form multiparticle" plural "false" caps "false" @@ -1815,7 +1815,7 @@ noprefix "false" , \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:f squared form multiparticle" plural "false" caps "false" @@ -1825,7 +1825,7 @@ noprefix "false" into \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:scattering CS single" plural "false" caps "false" @@ -1835,7 +1835,7 @@ noprefix "false" and \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:absorption CS single" plural "false" caps "false" @@ -1873,7 +1873,7 @@ An alternative approach to derive the absorption cross section is via a power transport argument. Note the direct proportionality between absorption cross section \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:absorption CS single" plural "false" caps "false" @@ -1883,7 +1883,7 @@ noprefix "false" and net radiated power for single scatterer \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Power transport" plural "false" caps "false" @@ -1905,7 +1905,7 @@ noprefix "false" . Using the power transport formula \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Power transport" plural "false" caps "false" @@ -1923,7 +1923,7 @@ noprefix "false" which seems different from \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:absorption CS multi" plural "false" caps "false" @@ -1933,7 +1933,7 @@ noprefix "false" , but using \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:particle total incident field coefficient a" plural "false" caps "false" @@ -1974,7 +1974,7 @@ TODO better formulation proving that the expressions in \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:absorption CS multi" plural "false" caps "false" @@ -1984,7 +1984,7 @@ noprefix "false" and \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:absorption CS multi alternative" plural "false" caps "false" diff --git a/lepaper/infinite.lyx b/lepaper/infinite.lyx index 8da4454..9e74628 100644 --- a/lepaper/infinite.lyx +++ b/lepaper/infinite.lyx @@ -215,7 +215,7 @@ noprefix "false" . In such system, the multiple-scattering problem \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Multiple-scattering problem" plural "false" caps "false" @@ -253,7 +253,7 @@ Due to periodicity, we can also write , the solutions of \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Multiple-scattering problem periodic" plural "false" caps "false" @@ -268,7 +268,7 @@ noprefix "false" , and eq. \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "eq:Multiple-scattering problem periodic" plural "false" caps "false" @@ -309,7 +309,7 @@ evaluation of which is possible but quite non-trivial due to the infinite lattice sum, so we explain it separately in Sect. \begin_inset CommandInset ref -LatexCommand ref +LatexCommand eqref reference "subsec:W operator evaluation" plural "false" caps "false"