Restoring accidentally deleted intro
Former-commit-id: f485907e47efb727e1e26f34aa8ca93b810bd103
This commit is contained in:
parent
f99fd5abe3
commit
94a4d59cfb
|
@ -1,37 +1,29 @@
|
||||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||||
\lyxformat 583
|
\lyxformat 474
|
||||||
\begin_document
|
\begin_document
|
||||||
\begin_header
|
\begin_header
|
||||||
\save_transient_properties true
|
|
||||||
\origin unavailable
|
|
||||||
\textclass article
|
\textclass article
|
||||||
\use_default_options true
|
\use_default_options true
|
||||||
\maintain_unincluded_children false
|
\maintain_unincluded_children false
|
||||||
\language english
|
\language finnish
|
||||||
\language_package default
|
\language_package default
|
||||||
\inputencoding utf8
|
\inputencoding auto
|
||||||
\fontencoding auto
|
\fontencoding global
|
||||||
\font_roman "default" "TeX Gyre Pagella"
|
\font_roman TeX Gyre Pagella
|
||||||
\font_sans "default" "default"
|
\font_sans default
|
||||||
\font_typewriter "default" "default"
|
\font_typewriter default
|
||||||
\font_math "auto" "auto"
|
\font_math auto
|
||||||
\font_default_family default
|
\font_default_family default
|
||||||
\use_non_tex_fonts false
|
\use_non_tex_fonts true
|
||||||
\font_sc false
|
\font_sc false
|
||||||
\font_roman_osf true
|
\font_osf true
|
||||||
\font_sans_osf false
|
\font_sf_scale 100
|
||||||
\font_typewriter_osf false
|
\font_tt_scale 100
|
||||||
\font_sf_scale 100 100
|
|
||||||
\font_tt_scale 100 100
|
|
||||||
\use_microtype false
|
|
||||||
\use_dash_ligatures true
|
|
||||||
\graphics default
|
\graphics default
|
||||||
\default_output_format default
|
\default_output_format pdf4
|
||||||
\output_sync 0
|
\output_sync 0
|
||||||
\bibtex_command default
|
\bibtex_command default
|
||||||
\index_command default
|
\index_command default
|
||||||
\float_placement class
|
|
||||||
\float_alignment class
|
|
||||||
\paperfontsize default
|
\paperfontsize default
|
||||||
\spacing single
|
\spacing single
|
||||||
\use_hyperref true
|
\use_hyperref true
|
||||||
|
@ -66,8 +58,6 @@
|
||||||
\suppress_date false
|
\suppress_date false
|
||||||
\justification true
|
\justification true
|
||||||
\use_refstyle 1
|
\use_refstyle 1
|
||||||
\use_minted 0
|
|
||||||
\use_lineno 0
|
|
||||||
\index Index
|
\index Index
|
||||||
\shortcut idx
|
\shortcut idx
|
||||||
\color #008000
|
\color #008000
|
||||||
|
@ -76,14 +66,10 @@
|
||||||
\tocdepth 3
|
\tocdepth 3
|
||||||
\paragraph_separation indent
|
\paragraph_separation indent
|
||||||
\paragraph_indentation default
|
\paragraph_indentation default
|
||||||
\is_math_indent 0
|
\quotes_language swedish
|
||||||
\math_numbering_side default
|
|
||||||
\quotes_style english
|
|
||||||
\dynamic_quotes 0
|
|
||||||
\papercolumns 1
|
\papercolumns 1
|
||||||
\papersides 1
|
\papersides 1
|
||||||
\paperpagestyle default
|
\paperpagestyle default
|
||||||
\tablestyle default
|
|
||||||
\tracking_changes false
|
\tracking_changes false
|
||||||
\output_changes false
|
\output_changes false
|
||||||
\html_math_output 0
|
\html_math_output 0
|
||||||
|
@ -95,6 +81,159 @@
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Introduction
|
Introduction
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sec:Introduction"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The problem of electromagnetic response of a system consisting of many compact
|
||||||
|
scatterers in various geometries, and its numerical solution, is relevant
|
||||||
|
to many branches of nanophotonics (TODO refs).
|
||||||
|
The most commonly used general approaches used in computational electrodynamics
|
||||||
|
, such as the finite difference time domain (FDTD) method or the finite
|
||||||
|
element method (FEM), are very often unsuitable for simulating systems
|
||||||
|
with larger number of scatterers due to their computational complexity.
|
||||||
|
Therefore, a common (frequency-domain) approach to get an approximate solution
|
||||||
|
of the scattering problem for many small particles has been the coupled
|
||||||
|
dipole approximation (CDA) where individual scatterers are reduced to electric
|
||||||
|
dipoles (characterised by a polarisability tensor) and coupled to each
|
||||||
|
other through Green's functions.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
CDA is easy to implement and has favorable computational complexity but
|
||||||
|
suffers from at least two fundamental drawbacks.
|
||||||
|
The obvious one is that the dipole approximation is too rough for particles
|
||||||
|
with diameter larger than a small fraction of the wavelength.
|
||||||
|
The other one, more subtle, manifests itself in photonic crystal-like structure
|
||||||
|
s used in nanophotonics: there are modes in which the particles' electric
|
||||||
|
dipole moments completely vanish due to symmetry, regardless of how small
|
||||||
|
the particles are, and the excitations have quadrupolar or higher-degree
|
||||||
|
multipolar character.
|
||||||
|
These modes typically appear at the band edges where interesting phenomena
|
||||||
|
such as lasing or Bose-Einstein condensation have been observed – and CDA
|
||||||
|
by definition fails to capture such modes.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The natural way to overcome both limitations of CDA mentioned above is to
|
||||||
|
include higher multipoles into account.
|
||||||
|
Instead of polarisability tensor, the scattering properties of an individual
|
||||||
|
particle are then described a more general
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix, and different particles' multipole excitations are coupled together
|
||||||
|
via translation operators, a generalisation of the Green's functions in
|
||||||
|
CDA.
|
||||||
|
This is the idea behind the
|
||||||
|
\emph on
|
||||||
|
multiple-scattering
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix method
|
||||||
|
\emph default
|
||||||
|
(MSTMM) (TODO a.k.a something??), and it has been implemented previously for
|
||||||
|
a limited subset of problems (TODO refs and list the limitations of the
|
||||||
|
available).
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO přestože blablaba, moc se to nepoužívalo, protože je težké udělat to
|
||||||
|
správně.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Due to the limitations of the existing available codes, we have been developing
|
||||||
|
our own implementation of MSTMM, which we have used in several previous
|
||||||
|
works studying various physical phenomena in plasmonic nanoarrays (TODO
|
||||||
|
examples with refs).
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Hereby we release our MSTMM implementation, the
|
||||||
|
\emph on
|
||||||
|
QPMS Photonic Multiple Scattering
|
||||||
|
\emph default
|
||||||
|
suite, as an open source software under the GNU General Public License
|
||||||
|
version 3.
|
||||||
|
(TODO refs to the code repositories.) QPMS allows for linear optics simulations
|
||||||
|
of arbitrary sets of compact scatterers in isotropic media.
|
||||||
|
The features include computations of electromagnetic response to external
|
||||||
|
driving, the related cross sections, and finding resonances of finite structure
|
||||||
|
s.
|
||||||
|
Moreover, in QPMS we extensively employ group theory to exploit the physical
|
||||||
|
symmetries of the system to further reduce the demands on computational
|
||||||
|
resources, enabling to simulate even larger systems.
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
(TODO put a specific example here of how large system we are able to simulate?)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Although systems of large
|
||||||
|
\emph on
|
||||||
|
finite
|
||||||
|
\emph default
|
||||||
|
number of scatterers are the area where MSTMM excels the most—simply because
|
||||||
|
other methods fail due to their computational complexity—we also extended
|
||||||
|
the method onto infinite periodic systems (photonic crystals); this can
|
||||||
|
be used for quickly evaluating dispersions of such structures and also
|
||||||
|
their topological invariants (TODO).
|
||||||
|
The QPMS suite contains a core C library, Python bindings and several utilities
|
||||||
|
for routine computations, such as TODO.
|
||||||
|
It includes extensive Doxygen documentation, together with description
|
||||||
|
of the API, making extending and customising the code easy.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The current paper is organised as follows: Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Finite"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is devoted to MSTMM theory for finite systems, in Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Infinite"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we develop the theory for infinite periodic structures.
|
||||||
|
Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Applications"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
demonstrates some basic practical results that can be obtained using QPMS.
|
||||||
|
Finally, in Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Comparison"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we comment on the computational complexity of MSTMM in comparison to other
|
||||||
|
methods.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_body
|
\end_body
|
||||||
|
|
Loading…
Reference in New Issue