Replace with correct drawing
Former-commit-id: 7a3ad9060c7adcb2a5ad5b0e52f4b1eb6ccf0e33
This commit is contained in:
parent
9aff527bd9
commit
9657dc613e
|
@ -790,13 +790,22 @@ noprefix "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Check whether everything written is correct also for non-symmorphic space
|
||||
groups.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
The text about symmetries is pretty dense.
|
||||
Make it more explanatory and human-readable.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Check whether everything written is correct also for non-symmorphic space
|
||||
groups.
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 136 KiB After Width: | Height: | Size: 118 KiB |
|
@ -318,14 +318,14 @@ noprefix "false"
|
|||
|
||||
and the properties of the gradient operator under coordinate transforms,
|
||||
vector spherical harmonics
|
||||
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
|
||||
\begin_inset Formula $\vsh2lm,\vsh3lm$
|
||||
\end_inset
|
||||
|
||||
transform in the same way,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\left(\groupop g\vsh2lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh3lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -337,8 +337,8 @@ status open
|
|||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\left(\groupop g\vsh2lm\right)\left(\uvec r\right) & =R_{g}\vsh2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh3lm\right)\left(\uvec r\right) & =R_{g}\vsh2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -349,14 +349,14 @@ status open
|
|||
\end_inset
|
||||
|
||||
but the remaining set
|
||||
\begin_inset Formula $\vsh 1lm$
|
||||
\begin_inset Formula $\vsh1lm$
|
||||
\end_inset
|
||||
|
||||
transforms differently due to their pseudovector nature stemming from the
|
||||
cross product in their definition:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(\groupop g\vsh 1lm\right)\left(\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 1l{m'}\left(\uvec r\right),
|
||||
\left(\groupop g\vsh1lm\right)\left(\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh1l{m'}\left(\uvec r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -411,8 +411,8 @@ noprefix "false"
|
|||
:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vswfouttlm 1lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||
\left(\groupop g\vswfouttlm 2lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||
\left(\groupop g\vswfouttlm1lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm1l{m'}\left(\vect r\right),\\
|
||||
\left(\groupop g\vswfouttlm2lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm2l{m'}\left(\vect r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1328,8 +1328,8 @@ horizontal
|
|||
the same unit cell, e.g.
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0C},
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1374,8 +1374,8 @@ vertical
|
|||
,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1385,22 +1385,22 @@ but we want
|
|||
\end_inset
|
||||
|
||||
to operate only inside one unit cell, so we use the Bloch condition
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\end_inset
|
||||
|
||||
: in this case, we have
|
||||
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect0\alpha}e^{i0}=\outcoeffp{\vect0\alpha}$
|
||||
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect 0\alpha}e^{i0}=\outcoeffp{\vect 0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect0\alpha}=e^{i\pi}\outcoeffp{\vect0\alpha}=-\outcoeffp{\vect0\alpha},$
|
||||
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect 0\alpha}=e^{i\pi}\outcoeffp{\vect 0\alpha}=-\outcoeffp{\vect 0\alpha},$
|
||||
\end_inset
|
||||
|
||||
so
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0C}.
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0C}.
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1439,19 +1439,19 @@ the original
|
|||
rotation, as an example we have
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0A},\\
|
||||
\outcoeff_{\vect0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0B},
|
||||
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0A},\\
|
||||
\outcoeff_{\vect 0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0B},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
because in this case, the Bloch condition gives
|
||||
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect0\alpha}e^{2\pi i/3}=\outcoeffp{\vect0\alpha}$
|
||||
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect 0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect 0\alpha}e^{2\pi i/3}=\outcoeffp{\vect 0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect0\alpha}.$
|
||||
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect 0\alpha}.$
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -1463,12 +1463,13 @@ placement document
|
|||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status collapsed
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename p6m_mpoint.png
|
||||
lyxscale 20
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
@ -1477,8 +1478,10 @@ status collapsed
|
|||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename p6m_kpoint.png
|
||||
lyxscale 20
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
@ -1490,6 +1493,20 @@ status collapsed
|
|||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Representing symmetry action on electromagnetic Bloch waves in a lattice
|
||||
with
|
||||
\begin_inset Formula $p6m$
|
||||
\end_inset
|
||||
|
||||
wallpaper group symmetry for
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
(top) and
|
||||
\begin_inset Formula $K$
|
||||
\end_inset
|
||||
|
||||
(bottom) points.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "Phase factor illustration"
|
||||
|
|
Loading…
Reference in New Issue