WIP Ewald 2D in 3D general z != 0 constant factors.
Former-commit-id: 787689f357bd8670948ba8ce7d8dc1205ca77d0f
This commit is contained in:
parent
975d23b557
commit
97977dbb46
|
@ -0,0 +1,245 @@
|
||||||
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||||
|
\lyxformat 584
|
||||||
|
\begin_document
|
||||||
|
\begin_header
|
||||||
|
\save_transient_properties true
|
||||||
|
\origin unavailable
|
||||||
|
\textclass article
|
||||||
|
\use_default_options true
|
||||||
|
\maintain_unincluded_children false
|
||||||
|
\language finnish
|
||||||
|
\language_package default
|
||||||
|
\inputencoding utf8
|
||||||
|
\fontencoding auto
|
||||||
|
\font_roman "default" "default"
|
||||||
|
\font_sans "default" "default"
|
||||||
|
\font_typewriter "default" "default"
|
||||||
|
\font_math "auto" "auto"
|
||||||
|
\font_default_family default
|
||||||
|
\use_non_tex_fonts false
|
||||||
|
\font_sc false
|
||||||
|
\font_roman_osf false
|
||||||
|
\font_sans_osf false
|
||||||
|
\font_typewriter_osf false
|
||||||
|
\font_sf_scale 100 100
|
||||||
|
\font_tt_scale 100 100
|
||||||
|
\use_microtype false
|
||||||
|
\use_dash_ligatures true
|
||||||
|
\graphics default
|
||||||
|
\default_output_format default
|
||||||
|
\output_sync 0
|
||||||
|
\bibtex_command default
|
||||||
|
\index_command default
|
||||||
|
\paperfontsize default
|
||||||
|
\use_hyperref false
|
||||||
|
\papersize default
|
||||||
|
\use_geometry false
|
||||||
|
\use_package amsmath 1
|
||||||
|
\use_package amssymb 1
|
||||||
|
\use_package cancel 1
|
||||||
|
\use_package esint 1
|
||||||
|
\use_package mathdots 1
|
||||||
|
\use_package mathtools 1
|
||||||
|
\use_package mhchem 1
|
||||||
|
\use_package stackrel 1
|
||||||
|
\use_package stmaryrd 1
|
||||||
|
\use_package undertilde 1
|
||||||
|
\cite_engine basic
|
||||||
|
\cite_engine_type default
|
||||||
|
\use_bibtopic false
|
||||||
|
\use_indices false
|
||||||
|
\paperorientation portrait
|
||||||
|
\suppress_date false
|
||||||
|
\justification true
|
||||||
|
\use_refstyle 1
|
||||||
|
\use_minted 0
|
||||||
|
\use_lineno 0
|
||||||
|
\index Index
|
||||||
|
\shortcut idx
|
||||||
|
\color #008000
|
||||||
|
\end_index
|
||||||
|
\secnumdepth 3
|
||||||
|
\tocdepth 3
|
||||||
|
\paragraph_separation indent
|
||||||
|
\paragraph_indentation default
|
||||||
|
\is_math_indent 0
|
||||||
|
\math_numbering_side default
|
||||||
|
\quotes_style english
|
||||||
|
\dynamic_quotes 0
|
||||||
|
\papercolumns 1
|
||||||
|
\papersides 1
|
||||||
|
\paperpagestyle default
|
||||||
|
\tablestyle default
|
||||||
|
\tracking_changes false
|
||||||
|
\output_changes false
|
||||||
|
\html_math_output 0
|
||||||
|
\html_css_as_file 0
|
||||||
|
\html_be_strict false
|
||||||
|
\end_header
|
||||||
|
|
||||||
|
\begin_body
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\uoft}[1]{\mathfrak{F}#1}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\sgn}{\operatorname{sgn}}
|
||||||
|
{\mathrm{sgn}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ud}{\mathrm{d}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\basis}[1]{\mathfrak{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\dc}[1]{Ш_{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\rec}[1]{#1^{-1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ints}{\mathbb{Z}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\nats}{\mathbb{N}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\reals}{\mathbb{R}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\hgfr}{\mathbf{F}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\hgf}{F}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ph}{\mathrm{ph}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\kor}[1]{\underline{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\koru}[1]{\utilde{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\swv}{\mathscr{H}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\expint}{\mathrm{E}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray}
|
||||||
|
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
|
||||||
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
|
||||||
|
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
|
||||||
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
|
||||||
|
& = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
|
||||||
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
For
|
||||||
|
\begin_inset Formula $z\ne0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
& =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
|
||||||
|
& \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\frac{\Delta_{npq}}{j!}\left(-1\right)^{j}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\binom{j}{2j-s}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_body
|
||||||
|
\end_document
|
|
@ -0,0 +1,375 @@
|
||||||
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||||
|
\lyxformat 584
|
||||||
|
\begin_document
|
||||||
|
\begin_header
|
||||||
|
\save_transient_properties true
|
||||||
|
\origin unavailable
|
||||||
|
\textclass article
|
||||||
|
\use_default_options true
|
||||||
|
\maintain_unincluded_children false
|
||||||
|
\language finnish
|
||||||
|
\language_package default
|
||||||
|
\inputencoding utf8
|
||||||
|
\fontencoding auto
|
||||||
|
\font_roman "default" "default"
|
||||||
|
\font_sans "default" "default"
|
||||||
|
\font_typewriter "default" "default"
|
||||||
|
\font_math "auto" "auto"
|
||||||
|
\font_default_family default
|
||||||
|
\use_non_tex_fonts false
|
||||||
|
\font_sc false
|
||||||
|
\font_roman_osf false
|
||||||
|
\font_sans_osf false
|
||||||
|
\font_typewriter_osf false
|
||||||
|
\font_sf_scale 100 100
|
||||||
|
\font_tt_scale 100 100
|
||||||
|
\use_microtype false
|
||||||
|
\use_dash_ligatures true
|
||||||
|
\graphics default
|
||||||
|
\default_output_format default
|
||||||
|
\output_sync 0
|
||||||
|
\bibtex_command default
|
||||||
|
\index_command default
|
||||||
|
\paperfontsize default
|
||||||
|
\use_hyperref false
|
||||||
|
\papersize default
|
||||||
|
\use_geometry false
|
||||||
|
\use_package amsmath 1
|
||||||
|
\use_package amssymb 1
|
||||||
|
\use_package cancel 1
|
||||||
|
\use_package esint 1
|
||||||
|
\use_package mathdots 1
|
||||||
|
\use_package mathtools 1
|
||||||
|
\use_package mhchem 1
|
||||||
|
\use_package stackrel 1
|
||||||
|
\use_package stmaryrd 1
|
||||||
|
\use_package undertilde 1
|
||||||
|
\cite_engine basic
|
||||||
|
\cite_engine_type default
|
||||||
|
\use_bibtopic false
|
||||||
|
\use_indices false
|
||||||
|
\paperorientation portrait
|
||||||
|
\suppress_date false
|
||||||
|
\justification true
|
||||||
|
\use_refstyle 1
|
||||||
|
\use_minted 0
|
||||||
|
\use_lineno 0
|
||||||
|
\index Index
|
||||||
|
\shortcut idx
|
||||||
|
\color #008000
|
||||||
|
\end_index
|
||||||
|
\secnumdepth 3
|
||||||
|
\tocdepth 3
|
||||||
|
\paragraph_separation indent
|
||||||
|
\paragraph_indentation default
|
||||||
|
\is_math_indent 0
|
||||||
|
\math_numbering_side default
|
||||||
|
\quotes_style english
|
||||||
|
\dynamic_quotes 0
|
||||||
|
\papercolumns 1
|
||||||
|
\papersides 1
|
||||||
|
\paperpagestyle default
|
||||||
|
\tablestyle default
|
||||||
|
\tracking_changes false
|
||||||
|
\output_changes false
|
||||||
|
\html_math_output 0
|
||||||
|
\html_css_as_file 0
|
||||||
|
\html_be_strict false
|
||||||
|
\end_header
|
||||||
|
|
||||||
|
\begin_body
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\lang finnish
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\Kambe}[1]{#1^{\mathrm{K}}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\Linton}[1]{#1^{\mathrm{L}}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Here and in Kambe's papers,
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the wavenumber (
|
||||||
|
\begin_inset Formula $k$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in Linton).
|
||||||
|
Here
|
||||||
|
\begin_inset Formula $\vect K_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is a point of the reciprocal lattice (
|
||||||
|
\begin_inset Formula $\vect K_{p}=\Kambe{\vect K_{pt}}=\Linton{\vect{\beta}_{\mu}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Gammas
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
For
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
positive,
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Kambe{\Gamma_{p}}\equiv\begin{cases}
|
||||||
|
\sqrt{\kappa^{2}-\left|\vect K_{p}\right|^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}>0\\
|
||||||
|
i\sqrt{\left|\vect K_{p}\right|^{2}-\kappa^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}<0
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Linton{\gamma_{\mu}}\equiv\begin{cases}
|
||||||
|
\sqrt{\left(\frac{\vect K_{p}}{\kappa}\right)^{2}-1} & \kappa-\left|\vect K_{p}\right|\le0\\
|
||||||
|
-i\sqrt{1-\left(\frac{\vect K_{p}}{\kappa}\right)^{2}} & \kappa-\left|\vect K_{p}\right|>0
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
hence
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}},
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Linton{\gamma_{\mu}}=i\frac{\Kambe{\Gamma_{p}}}{\kappa}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
D vs sigma
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
In-plane sums [Linton 2009, (4.5)], replacing
|
||||||
|
\begin_inset Formula $n,m\rightarrow L,M$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $k\rightarrow\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\sigma_{L}^{M(1)} & = & -\frac{i^{L+1}}{2\kappa^{2}\mathscr{A}}\left(-1\right)^{\left(L+M\right)/2}\sqrt{\left(2L+1\right)\left(L-M\right)!\left(L+M\right)!}\times\\
|
||||||
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(L-\left|M\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2\kappa\right)^{L-2j}e^{iM\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(L-M\right)-j\right)!\left(\frac{1}{2}\left(L+M\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
[Kambe II, (3.17)], replacing
|
||||||
|
\lang finnish
|
||||||
|
|
||||||
|
\begin_inset Formula $n\rightarrow j$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
,
|
||||||
|
\lang finnish
|
||||||
|
|
||||||
|
\begin_inset Formula $A\rightarrow\mathscr{A}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $\vect K_{pt}\to\vect K_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,e^{-i\pi}\Gamma_{p}^{2}\omega/2\right)\to\Gamma_{j,p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and performing little typographic modifications
|
||||||
|
\lang english
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
|
||||||
|
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(\Gamma_{p}/\kappa\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Using the relations between
|
||||||
|
\begin_inset Formula $\Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we have (also, we replace the
|
||||||
|
\begin_inset Formula $\mu$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
index with
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
)
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
|
||||||
|
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\gamma_{p}\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and now, trying to make the exponents look the same as in Linton,
|
||||||
|
\begin_inset Formula $2^{-1}2^{2j-L}2^{1-2j}=2^{-L}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(OK),
|
||||||
|
\begin_inset Formula $K_{p}^{L-2j}=K_{p}^{L-2j}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(OK),
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
D_{LM} & =-\frac{1}{2\kappa\mathscr{A}}i^{\left|M\right|+1}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
|
||||||
|
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ij}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\right)^{2j-1}\left(K_{p}/2\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}\left(\frac{\gamma_{p}}{2}\right)^{2j-1}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
There are now these differences left:
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
Additional
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
factor in
|
||||||
|
\begin_inset Formula $D_{LM}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
\begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}\left(-1\right)^{j}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
vs.
|
||||||
|
|
||||||
|
\begin_inset Formula $i^{\left|M\right|+1}\left(-i\right)^{2j-1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
Opposite phase in the angular part.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
Plane wave factor in
|
||||||
|
\begin_inset Formula $D_{LM}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\lang english
|
||||||
|
Let's look at the
|
||||||
|
\begin_inset Formula $i,-1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
factors (note that
|
||||||
|
\begin_inset Formula $L+M$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is odd):
|
||||||
|
\begin_inset Formula $\left(-i\right)^{2j}=\left(-1\right)^{j},$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
leaving
|
||||||
|
\begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
vs.
|
||||||
|
|
||||||
|
\begin_inset Formula $i^{\left|M\right|+1}i$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
So there is might be a phase difference due to different conventions, but
|
||||||
|
it does not depend on
|
||||||
|
\begin_inset Formula $j$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, so one should be able to transplant the
|
||||||
|
\begin_inset Formula $z\ne0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
sum from Kambe without major problems.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
Ewald parameter (integration limits)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_body
|
||||||
|
\end_document
|
41
qpms/ewald.c
41
qpms/ewald.c
|
@ -26,11 +26,12 @@
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef M_SQRTPI
|
#ifndef M_SQRTPI
|
||||||
#define M_SQRTPI 1.7724538509055160272981674833411452
|
#define M_SQRTPI 1.7724538509055160272981674833411452L
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
// sloppy implementation of factorial
|
// sloppy implementation of factorial
|
||||||
|
// We prefer to avoid tgamma/lgamma, as their errors are about 4+ bits
|
||||||
static inline double factorial(const int n) {
|
static inline double factorial(const int n) {
|
||||||
assert(n >= 0);
|
assert(n >= 0);
|
||||||
if (n < 0)
|
if (n < 0)
|
||||||
|
@ -45,6 +46,44 @@ static inline double factorial(const int n) {
|
||||||
return tgamma(n + 1); // hope it's precise and that overflow does not happen
|
return tgamma(n + 1); // hope it's precise and that overflow does not happen
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// sloppy implementation of double factorial n!!
|
||||||
|
static inline double double_factorial(int n) {
|
||||||
|
assert(n >= 0);
|
||||||
|
if (n <= 25) {
|
||||||
|
double fac = 1;
|
||||||
|
while (n > 0) {
|
||||||
|
fac *= n;
|
||||||
|
n -= 2;
|
||||||
|
}
|
||||||
|
return fac;
|
||||||
|
} else {
|
||||||
|
if (n % 2) { // odd, (2*k - 1)!! = 2**k * Γ(k + 0.5) / sqrt(п)
|
||||||
|
const int k = n / 2 + 1;
|
||||||
|
return pow(2, k) * tgamma(k + 0.5) / M_SQRTPI;
|
||||||
|
} else { // even, n!! = 2**(n/2) * (n/2)!
|
||||||
|
const int k = n/2;
|
||||||
|
return pow(2, k) * factorial(k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// sloppy implementation of (n/2)! = Γ(n/2 + 1)
|
||||||
|
// It is _slightly_ more precise than direct call of tgamma for small odd n
|
||||||
|
static inline double factorial_of_half(const int n2) {
|
||||||
|
assert(n2 >= 0);
|
||||||
|
if (n2 % 2 == 0) return factorial(n2/2);
|
||||||
|
else {
|
||||||
|
if (n2 <= 50) { // odd, use (k - 0.5)! = Γ(k + 0.5) = 2**(-k) (2*k - 1)!! sqrt(п) for small n2
|
||||||
|
const int k = n2 / 2 + 1;
|
||||||
|
double fac2 = 1;
|
||||||
|
for(int j = 2*k - 1; j > 0; j -= 2)
|
||||||
|
fac2 *= j;
|
||||||
|
return fac2 * pow(2, -k) * M_SQRTPI;
|
||||||
|
}
|
||||||
|
else return tgamma(1. + 0.5*n2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static inline complex double csq(complex double x) { return x * x; }
|
static inline complex double csq(complex double x) { return x * x; }
|
||||||
static inline double sq(double x) { return x * x; }
|
static inline double sq(double x) { return x * x; }
|
||||||
|
|
||||||
|
|
28
qpms/ewald.h
28
qpms/ewald.h
|
@ -80,6 +80,34 @@ typedef struct qpms_ewald3_constants_t {
|
||||||
* 2D sum with additional factor of
|
* 2D sum with additional factor of
|
||||||
* \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$.
|
* \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
///=============== NEW GENERATION GENERAL 2D-IN-3D, including z != 0 =========================
|
||||||
|
|
||||||
|
// TODO indexing mechanisms
|
||||||
|
|
||||||
|
/// The constant factors for the long range part of a 2D Ewald sum.
|
||||||
|
complex double **S1_constfacs; // indices [y][j] where j is same as in [1, (4.5)]
|
||||||
|
/* These are the actual numbers now: (in the EWALD32_CONSTANTS_AGNOSTIC version)
|
||||||
|
* for m + n EVEN:
|
||||||
|
*
|
||||||
|
* s1_constfacs[y(m,n)][x(j,s)] =
|
||||||
|
*
|
||||||
|
* -2 * I**(n+1) * sqrt(π) * ((n-m)/2)! * ((n+m)/2)! * (-1)**j / j \
|
||||||
|
* ----------------------------------------------------------- | |
|
||||||
|
* j! * ((n - m - s)/2)! * ((n + m - s)/2)! \ 2j - s /
|
||||||
|
*
|
||||||
|
* for m + n ODD:
|
||||||
|
*
|
||||||
|
* s1_constfacs[y(m,n)][j] = 0
|
||||||
|
*/
|
||||||
|
complex double *S1_constfacs_base; ///< Internal pointer holding memory for the 2D Ewald sum constant factors.
|
||||||
|
/// The constant factors for the long range part of a 1D Ewald sum along the \a z axis.
|
||||||
|
/** If the summation points lie along a different direction, use the formula for
|
||||||
|
* 2D sum with additional factor of
|
||||||
|
* \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
complex double **s1_constfacs_1Dz;
|
complex double **s1_constfacs_1Dz;
|
||||||
/* These are the actual numbers now:
|
/* These are the actual numbers now:
|
||||||
* s1_constfacs_1Dz[n][j] =
|
* s1_constfacs_1Dz[n][j] =
|
||||||
|
|
Loading…
Reference in New Issue