[ewald] Pokračování
Former-commit-id: 5c163530c176c0eb5a9e372414898830df65a189
This commit is contained in:
parent
83fed81e24
commit
98ffdfc874
188
notes/ewald.lyx
188
notes/ewald.lyx
|
@ -187,6 +187,16 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hgfr}{\mathbf{F}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ph}{\mathrm{ph}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
|
@ -685,7 +695,7 @@ h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\righ
|
|||
\end_inset
|
||||
|
||||
so if we find a way to deal with the radial functions
|
||||
\begin_inset Formula $s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
|
@ -755,7 +765,7 @@ Here
|
|||
|
||||
\begin_layout Standard
|
||||
Obviously, all the terms
|
||||
\begin_inset Formula $\propto s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\begin_inset Formula $\propto s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
|
@ -778,7 +788,7 @@ reference "eq:spherical Hankel function series"
|
|||
|
||||
\begin_layout Standard
|
||||
The remaining task is therefore to find a suitable decomposition of
|
||||
\begin_inset Formula $s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
|
@ -786,16 +796,16 @@ The remaining task is therefore to find a suitable decomposition of
|
|||
\end_inset
|
||||
|
||||
into short-range and long-range parts,
|
||||
\begin_inset Formula $s_{q}(r)=s_{q}^{\textup{S}}(r)+s_{q}^{\textup{L}}(r)$
|
||||
\begin_inset Formula $s_{k_{0},q}(r)=s_{k_{0},q}^{\textup{S}}(r)+s_{k_{0},q}^{\textup{L}}(r)$
|
||||
\end_inset
|
||||
|
||||
, such that
|
||||
\begin_inset Formula $s_{q}^{\textup{L}}(r)$
|
||||
\begin_inset Formula $s_{k_{0},q}^{\textup{L}}(r)$
|
||||
\end_inset
|
||||
|
||||
contains all the slowly decaying asymptotics and its Hankel transforms
|
||||
decay desirably fast as well,
|
||||
\begin_inset Formula $\pht n{s_{q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$
|
||||
\begin_inset Formula $\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
|
@ -810,7 +820,7 @@ The remaining task is therefore to find a suitable decomposition of
|
|||
must be sufficiently smooth in the origin, so that
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\pht n{s_{q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
|
||||
\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{k_{0},q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -852,8 +862,9 @@ The electrostatic Ewald summation uses regularisation with
|
|||
\end_inset
|
||||
|
||||
.
|
||||
However, such choice does not seem to lead to an analytical solution for
|
||||
the current problem
|
||||
However, such choice does not seem to lead to an analytical solution (really?
|
||||
could not something be dug out of DLMF 10.22.54?) for the current problem
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:2d long range regularisation problem statement"
|
||||
|
@ -876,6 +887,165 @@ leads to satisfactory results, as will be shown below.
|
|||
Hankel transforms of the long-range parts
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & \equiv & \int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)\left(1-e^{-cr}\right)^{\kappa}r\,\ud r\nonumber \\
|
||||
& = & k_{0}^{-q}\int_{0}^{\infty}r^{1-q}J_{n}\left(kr\right)\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}e^{-(\sigma c-ik_{0})r}\ud r\nonumber \\
|
||||
& \underset{\equiv}{\textup{form.}} & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\pht n{s_{q,k_{0}}^{\textup{L}1,\sigma c}}\left(k\right).\label{eq:2D Hankel transform of regularized outgoing wave, decomposition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
From [REF DLMF 10.22.49] one digs
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\mu & \leftarrow & 2-q\\
|
||||
\nu & \leftarrow & n\\
|
||||
b & \leftarrow & k\\
|
||||
a & \leftarrow & c-ik_{0}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right),\\
|
||||
\Re\left(2-q+n\right)>0,\Re(c-ik_{0}\pm k)\ge0,\label{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
and from [REF DLMF 15.9.17]
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
a & \leftarrow & \frac{2-q+n}{2}\\
|
||||
c & \leftarrow & 1+n\\
|
||||
z & \leftarrow & \frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right) & = & \frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}2^{n}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right)^{-\frac{2-q+n}{2}+\frac{n}{2}}P_{2-q+n-(1+n)}^{1-(1+n)}\left(\frac{1}{\sqrt{1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)}}\right)\\
|
||||
& = & \frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{1-q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi,\quad\left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right|<\pi
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
in other words, neither
|
||||
\begin_inset Formula $-k^{2}/\left(c-ik_{0}\right)^{2}$
|
||||
\end_inset
|
||||
|
||||
nor
|
||||
\begin_inset Formula $1+k^{2}/\left(c-ik_{0}\right)^{2}$
|
||||
\end_inset
|
||||
|
||||
can be non-positive real number.
|
||||
For assumed positive
|
||||
\begin_inset Formula $k_{0}$
|
||||
\end_inset
|
||||
|
||||
and non-negative
|
||||
\begin_inset Formula $c$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
, the former case can happen only if
|
||||
\begin_inset Formula $k=0$
|
||||
\end_inset
|
||||
|
||||
and the latter only if
|
||||
\begin_inset Formula $c=0\wedge k_{0}=k$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi & \Leftrightarrow & \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|\neq\pi\\
|
||||
\varphi & \equiv & \ph\left(c-ik_{0}\right)<0,\\
|
||||
\ph k & \equiv & 0\\
|
||||
\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}} & = & 2\varphi\\
|
||||
\rightsquigarrow\left|\varphi\right| & \neq & \pi/2\\
|
||||
\rightsquigarrow c & \neq & k_{0}\\
|
||||
\left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right| & = & \left|-2\varphi+\ph\left(\left(c-ik_{0}\right)^{2}+k^{2}\right)\right|
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{1-q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
|
||||
k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
with principal branches of the hypergeometric functions, associated Legendre
|
||||
functions, and fractional powers.
|
||||
The conditions from
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
|
||||
|
||||
\end_inset
|
||||
|
||||
should hold, but we will use
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
|
||||
|
||||
\end_inset
|
||||
|
||||
formally even if they are violated, with the hope that the divergences
|
||||
eventually cancel in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
3d
|
||||
\end_layout
|
||||
|
|
Loading…
Reference in New Issue