From 995920e447e6ff55ba73be0bd33edf77181bd2fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Sat, 5 Aug 2017 12:09:43 +0000 Subject: [PATCH] Continuing notes on Ewald summation Former-commit-id: 794cba8fd3cc2bad71a134b380da47d9f0a4b6af --- notes/ewald.lyx | 142 +++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 139 insertions(+), 3 deletions(-) diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 6b3ac56..702ae00 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -316,6 +316,122 @@ reference "eq:W definition" \end_layout \begin_layout Standard +Let us re-express the sum in +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:W definition" + +\end_inset + + in terms of integral with a delta comb +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral} +\end{equation} + +\end_inset + +The translation operator +\begin_inset Formula $S$ +\end_inset + + is now a function defined in the whole 3D space; +\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$ +\end_inset + + are the displacements of scatterers +\begin_inset Formula $\alpha$ +\end_inset + + and +\begin_inset Formula $\beta$ +\end_inset + + in a unit cell. + The arrow notation +\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$ +\end_inset + + means +\begin_inset Quotes eld +\end_inset + +translation operator for spherical waves originating in +\begin_inset Formula $\vect r+\vect r_{\beta}$ +\end_inset + + evaluated in +\begin_inset Formula $\vect r_{\alpha}$ +\end_inset + + +\begin_inset Quotes erd +\end_inset + + and obviously +\begin_inset Formula $S$ +\end_inset + + is in fact a function of a single 3d argument, +\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$ +\end_inset + +. + Expression +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:W integral" + +\end_inset + + can be rewritten as +\begin_inset Formula +\[ +W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)} +\] + +\end_inset + +where changed the sign of +\begin_inset Formula $\vect r/\vect{\bullet}$ +\end_inset + + has been swapped under integration, utilising evenness of +\begin_inset Formula $\dc{\basis u}$ +\end_inset + +. + Fourier transform of product is convolution of Fourier transforms, so +\begin_inset Formula +\[ +W_{\alpha\beta}(\vect k)=\left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k) +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Factor +\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$ +\end_inset + + cancels out with the +\begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$ +\end_inset + + factor appearing in the convolution/product formula in the unitary angular + momentum convention. + +\end_layout + +\end_inset + \end_layout @@ -405,7 +521,7 @@ we have and with unitary angular frequency Ft., i.e. \begin_inset Formula \[ -\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect k}\ud^{n}\vect x +\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x \] \end_inset @@ -608,13 +724,33 @@ Fourier transform \end_layout \begin_layout Standard -From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf +From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf, p. + 379 +\end_layout + +\begin_layout Standard +(CHECK THIS) \end_layout \begin_layout Standard \begin_inset Formula \[ -\uoft{\dc A}\left(\vect{\xi}\right)=\dc{}^{(d)}\left(A^{T}\vect{\xi}\right). +\uoft{\dc A}\left(\vect{\xi}\right)=\left|\det A^{-T}\right|\dc{}^{(d)}\left(A^{-T}\vect{\xi}\right). +\] + +\end_inset + +And consequently, for unitary/angular frequency it is +\end_layout + +\begin_layout Standard +(CHECK THIS) +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\uaft{\dc A}\left(\vect{\xi}\right)=\frac{\left|\det A^{-T}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{}^{(d)}\left(\frac{1}{2\pi}A^{-T}\vect{\xi}\right). \] \end_inset