Continuing notes on Ewald summation
Former-commit-id: 794cba8fd3cc2bad71a134b380da47d9f0a4b6af
This commit is contained in:
parent
231ee844d1
commit
995920e447
142
notes/ewald.lyx
142
notes/ewald.lyx
|
@ -316,6 +316,122 @@ reference "eq:W definition"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us re-express the sum in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W definition"
|
||||
|
||||
\end_inset
|
||||
|
||||
in terms of integral with a delta comb
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
The translation operator
|
||||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
||||
is now a function defined in the whole 3D space;
|
||||
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
|
||||
\end_inset
|
||||
|
||||
are the displacements of scatterers
|
||||
\begin_inset Formula $\alpha$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\beta$
|
||||
\end_inset
|
||||
|
||||
in a unit cell.
|
||||
The arrow notation
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
|
||||
\end_inset
|
||||
|
||||
means
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
translation operator for spherical waves originating in
|
||||
\begin_inset Formula $\vect r+\vect r_{\beta}$
|
||||
\end_inset
|
||||
|
||||
evaluated in
|
||||
\begin_inset Formula $\vect r_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
and obviously
|
||||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
||||
is in fact a function of a single 3d argument,
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Expression
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W integral"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be rewritten as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where changed the sign of
|
||||
\begin_inset Formula $\vect r/\vect{\bullet}$
|
||||
\end_inset
|
||||
|
||||
has been swapped under integration, utilising evenness of
|
||||
\begin_inset Formula $\dc{\basis u}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Fourier transform of product is convolution of Fourier transforms, so
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha\beta}(\vect k)=\left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Factor
|
||||
\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
|
||||
\end_inset
|
||||
|
||||
cancels out with the
|
||||
\begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
|
||||
\end_inset
|
||||
|
||||
factor appearing in the convolution/product formula in the unitary angular
|
||||
momentum convention.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
@ -405,7 +521,7 @@ we have
|
|||
and with unitary angular frequency Ft., i.e.
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect k}\ud^{n}\vect x
|
||||
\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -608,13 +724,33 @@ Fourier transform
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf
|
||||
From the book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf, p.
|
||||
379
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
(CHECK THIS)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uoft{\dc A}\left(\vect{\xi}\right)=\dc{}^{(d)}\left(A^{T}\vect{\xi}\right).
|
||||
\uoft{\dc A}\left(\vect{\xi}\right)=\left|\det A^{-T}\right|\dc{}^{(d)}\left(A^{-T}\vect{\xi}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
And consequently, for unitary/angular frequency it is
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
(CHECK THIS)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft{\dc A}\left(\vect{\xi}\right)=\frac{\left|\det A^{-T}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{}^{(d)}\left(\frac{1}{2\pi}A^{-T}\vect{\xi}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue