VSWF definitions
Former-commit-id: 62b0acce66d4e6b228720861c87c529a82087615
This commit is contained in:
parent
94a4d59cfb
commit
9aefacfa00
|
@ -155,7 +155,19 @@ The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
|||
Repeating the same procedure with all (pairs of) scatterers yields a set
|
||||
of linear equations, solution of which gives the coefficients of the scattered
|
||||
field in the VSWF bases.
|
||||
However,
|
||||
Once these coefficients have been found, one can evaluate various quantities
|
||||
related to the scattering (such as cross sections or the scattered fields)
|
||||
quite easily.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
However, the expressions appearing in the re-expansions are fairly complicated,
|
||||
and the implementation of MSTMM is extremely error-prone also due to the
|
||||
various conventions used in the literature.
|
||||
Therefore although we do not re-derive from scratch the expressions that
|
||||
can be found elsewhere in literature, we always state them explicitly in
|
||||
our convention.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -185,12 +197,40 @@ ity
|
|||
, and that the whole system is linear, i.e.
|
||||
the material properties of neither the medium nor the scatterer depend
|
||||
on field intensities.
|
||||
Under these assumptions, the EM fields in
|
||||
Under these assumptions, the EM fields
|
||||
\begin_inset Formula $\vect{\Psi}=\vect E,\vect H$
|
||||
\end_inset
|
||||
|
||||
in
|
||||
\begin_inset Formula $\medium$
|
||||
\end_inset
|
||||
|
||||
must satisfy the homogeneous vector Helmholtz equation
|
||||
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0$
|
||||
must satisfy the homogeneous vector Helmholtz equation together with the
|
||||
transversality condition
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
frequency-space Maxwell's equations
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
|
||||
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -208,29 +248,165 @@ todo define
|
|||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $k=TODO$
|
||||
\begin_inset Formula $k=k\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
||||
\end_inset
|
||||
|
||||
[TODO REF Jackson?].
|
||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
||||
, as can be derived from the Maxwell's equations [REF Jackson?].
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Spherical waves
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Throughout this text, we will use the same normalisation conventions as
|
||||
in
|
||||
Equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Helmholtz eq"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be solved by separation of variables in spherical coordinates to give
|
||||
the solutions – the
|
||||
\emph on
|
||||
regular
|
||||
\emph default
|
||||
and
|
||||
\emph on
|
||||
outgoing
|
||||
\emph default
|
||||
vector spherical wavefunctions (VSWFs)
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vect r=r\uvec r$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
|
||||
\end_inset
|
||||
|
||||
are the regular spherical Bessel function and spherical Hankel function
|
||||
of the first kind, respectively, as in [DLMF §10.47], and
|
||||
\begin_inset Formula $\vsh{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
are the
|
||||
\emph on
|
||||
vector spherical harmonics
|
||||
\emph default
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vsh 1lm & =\\
|
||||
\vsh 2lm & =\\
|
||||
\vsh 3lm & =
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
In our convention, the (scalar) spherical harmonics
|
||||
\begin_inset Formula $\ush lm$
|
||||
\end_inset
|
||||
|
||||
are identical to those in [DLMF 14.30.1], i.e.
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where importantly, the Ferrers functions
|
||||
\begin_inset Formula $\dlmfFer lm$
|
||||
\end_inset
|
||||
|
||||
defined as in [DLMF §14.3(i)] do already contain the Condon-Shortley phase
|
||||
|
||||
\begin_inset Formula $\left(-1\right)^{m}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO názornější definice.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The convention for VSWFs used here is the same as in [Kristensson 2014];
|
||||
over other conventions used elsewhere in literature, it has several fundamental
|
||||
advantages – most importantly, the translation operators introduced later
|
||||
in eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:translation op def"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
are unitary, and it gives the simplest possible expressions for power transport
|
||||
and cross sections without additional
|
||||
\begin_inset Formula $l,m$
|
||||
\end_inset
|
||||
|
||||
-dependent factors (for that reason, we also call our VSWFs as
|
||||
\emph on
|
||||
power-normalised
|
||||
\emph default
|
||||
).
|
||||
Power-normalisation and unitary translation operators are possible to achieve
|
||||
also with real spherical harmonics – such a convention is used in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Spherical waves
|
||||
\begin_layout Standard
|
||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
Loading…
Reference in New Issue