Sum upper estimates

Former-commit-id: 8644505403873e1db6c01f106e5d889da8981c62
This commit is contained in:
Marek Nečada 2018-09-10 20:01:49 +00:00
parent 84a2b7f64d
commit 9b3632d5a0
1 changed files with 119 additions and 5 deletions

View File

@ -3144,6 +3144,120 @@ To have it complete,
\end_layout
\begin_layout Subsection
Error estimates
\end_layout
\begin_layout Standard
For the part of a 2D lattice sum that lies outside of a circle with radius
\begin_inset Formula $R$
\end_inset
and
\begin_inset Formula $f(r)$
\end_inset
positive, radial, monotonically decreasing, we have
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathscr{A}_{\Lambda}\sum_{\begin{array}{c}
\vect R_{i}\in\Lambda\\
\left|\vect R_{i}\right|\ge R
\end{array}}f\left(\left|\vect R_{i}\right|\right)\le2\pi\underbrace{\int_{R_{\mathrm{s}}\left(R,\Lambda\right)}^{\infty}rf(r)\,\ud r}_{\equiv B_{R_{\mathrm{s}}}\left[f\right]},\label{eq:lsum_bound}
\end{equation}
\end_inset
where the largest
\begin_inset Quotes eld
\end_inset
safe radius
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $R_{\mathrm{s}}\left(R,\Lambda\right)$
\end_inset
is probably something like
\begin_inset Formula $R-\left|\vect u_{\mathrm{L}}\right|$
\end_inset
where
\begin_inset Formula $\vect u_{\mathrm{L}}$
\end_inset
is the longer primitive lattice vector of
\begin_inset Formula $\Lambda$
\end_inset
.
\end_layout
\begin_layout Standard
For the short-range part
\begin_inset Formula $\sigma_{n}^{m(2)}$
\end_inset
, the radially varying part reads
\begin_inset Formula $f_{\eta}^{\mathrm{L}}\left(R_{pq}\right)\equiv R_{pq}^{n}\int_{\eta}^{\infty}e^{-R_{pq}^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi$
\end_inset
and for its integral as in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:lsum_bound"
\end_inset
we have
\begin_inset Formula
\begin{eqnarray*}
B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{n+1}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
& \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}r^{n+1}e^{-r^{2}\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
& = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(E_{\frac{1}{2}-n}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)-E_{-\frac{n}{2}}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
& = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(\left(\eta R_{\mathrm{s}}\right)^{-2n-1}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\left(\eta R_{\mathrm{s}}\right)^{-n-2}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
& = & \frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right),
\end{eqnarray*}
\end_inset
where the integral is according to mathematica and the error functions were
transformed to incomplete gammas using the relation
\begin_inset Formula $\Gamma\left(s,x\right)=x^{s}E_{1-s}\left(x\right)$
\end_inset
from Wikipedia or equivalently
\begin_inset Formula $\Gamma\left(1-n,z\right)=z^{1-n}E_{n}\left(z\right)$
\end_inset
from [DLMF(8.4.13)].
Therefore, the upper estimate for the short-range sum error is
\begin_inset Formula
\begin{eqnarray*}
\left|\sigma_{n}^{m(2)}|_{R_{pq}>R}\right| & \le & \frac{2^{n+1}}{k^{n+1}\sqrt{\pi}}\left|P_{n}^{m}\left(0\right)\right|\frac{2\pi}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)\\
& = & \frac{2^{n+1}}{k^{n+1}}\left|P_{n}^{m}\left(0\right)\right|\frac{\sqrt{\pi}}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{n-1}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right).
\end{eqnarray*}
\end_inset
Apparently, this expression is problematic for
\begin_inset Formula $n=1$
\end_inset
; Mathematica gives for that case some ugly expression with
\begin_inset Formula $_{2}F_{2}$
\end_inset
.
Hence it might make sense to take a rougher estimate TODO
\end_layout
\begin_layout Section
Major TODOs and open questions
\end_layout
@ -3228,7 +3342,7 @@ where the spherical Hankel transform
2)
\begin_inset Formula
\[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\]
\end_inset
@ -3238,7 +3352,7 @@ Using this convention, the inverse spherical Hankel transform is given by
3)
\begin_inset Formula
\[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
\]
\end_inset
@ -3251,7 +3365,7 @@ so it is not unitary.
An unitary convention would look like this:
\begin_inset Formula
\begin{equation}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\end{equation}
\end_inset
@ -3305,8 +3419,8 @@ where the Hankel transform of order
is defined as
\begin_inset Formula
\begin{eqnarray}
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
\end{eqnarray}
\end_inset