Get rid of dependency on Moble's quaternions.
Former-commit-id: 182aeda66992aa43c2c172c28a199feba0d6878f
This commit is contained in:
parent
52039f5cbb
commit
9c7d69dc5c
2
TODO.md
2
TODO.md
|
@ -7,6 +7,8 @@ TODO list before public release
|
|||
- Field calculations.
|
||||
- Complex frequencies, n's, k's.
|
||||
- Transforming point (meta)generators.
|
||||
- Check whether moble's quaternions and my
|
||||
quaternions give the same results in tmatrices.py
|
||||
- Ewald summations of all types of lattices (dimensionality-wise).
|
||||
- Split lattices.h into separate point generator and lattice vector manipulation parts.
|
||||
* Maybe move something from the .h to .c file.
|
||||
|
|
|
@ -920,6 +920,18 @@ cdef class CQuat:
|
|||
return 0
|
||||
return qpms_wignerD_elem(self.q, l, mp, m)
|
||||
|
||||
@staticmethod
|
||||
def from_rotvector(vec):
|
||||
if vec.shape != (3,):
|
||||
raise ValueError("Single 3d vector expected")
|
||||
res = CQuat()
|
||||
cdef cart3_t v
|
||||
v.x = vec[0]
|
||||
v.y = vec[1]
|
||||
v.z = vec[2]
|
||||
res.q = qpms_quat_from_rotvector(v)
|
||||
return res
|
||||
|
||||
cdef class IRot3:
|
||||
'''
|
||||
Wrapper over the C type qpms_irot3_t.
|
||||
|
|
|
@ -188,6 +188,7 @@ cdef extern from "wigner.h":
|
|||
qpms_m_t mp, qpms_m_t m)
|
||||
qpms_irot3_t qpms_irot3_mult(qpms_irot3_t p, qpms_irot3_t q)
|
||||
qpms_irot3_t qpms_irot3_pow(qpms_irot3_t p, int n)
|
||||
qpms_quat_t qpms_quat_from_rotvector(cart3_t v)
|
||||
|
||||
cdef extern from "groups.h":
|
||||
struct qpms_finite_group_irrep_t:
|
||||
|
|
|
@ -1,9 +1,15 @@
|
|||
import numpy as np
|
||||
import quaternion, spherical_functions as sf # because of the Wigner matrices. These imports are SLOW.
|
||||
use_moble_quaternion = False
|
||||
try:
|
||||
import quaternion, spherical_functions as sf # because of the Wigner matrices. These imports are SLOW.
|
||||
use_moble_quaternion = True
|
||||
except ImportError:
|
||||
use_moble_quaternion = False
|
||||
|
||||
import re
|
||||
from scipy import interpolate
|
||||
from scipy.constants import hbar, e as eV, pi, c
|
||||
from qpms_c import get_mn_y, get_nelem
|
||||
from qpms_c import get_mn_y, get_nelem, CQuat
|
||||
ň = np.newaxis
|
||||
from .types import NormalizationT, TMatrixSpec
|
||||
|
||||
|
@ -17,15 +23,26 @@ def WignerD_mm(l, quat):
|
|||
TODO doc
|
||||
"""
|
||||
|
||||
if use_moble_quaternion:
|
||||
indices = np.array([ [l,i,j] for i in range(-l,l+1) for j in range(-l,l+1)])
|
||||
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
|
||||
return Delems
|
||||
else:
|
||||
Delems = np.zeros((2*l+1, 2*l+1), dtype=complex)
|
||||
for i in range(-l,l+1):
|
||||
for j in range(-l,l+1):
|
||||
Delems[i,j] = quat.wignerDelem(l, i, j)
|
||||
return Delems
|
||||
|
||||
|
||||
def WignerD_mm_fromvector(l, vect):
|
||||
"""
|
||||
TODO doc
|
||||
"""
|
||||
if use_moble_quaternion:
|
||||
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
|
||||
else:
|
||||
return WignerD_mm(l, CQuat.from_rotvector(vect))
|
||||
|
||||
|
||||
def WignerD_yy(lmax, quat):
|
||||
|
@ -46,7 +63,10 @@ def WignerD_yy_fromvector(lmax, vect):
|
|||
"""
|
||||
TODO doc
|
||||
"""
|
||||
if use_moble_quaternion:
|
||||
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
|
||||
else:
|
||||
return WignerD_yy(lMax, CQuat.from_rotvector(vect))
|
||||
|
||||
def identity_yy(lmax):
|
||||
"""
|
||||
|
|
|
@ -113,6 +113,7 @@ static inline qpms_quat_t qpms_quat_pow(const qpms_quat_t q, const double expone
|
|||
return qpms_quat_exp(qe);
|
||||
}
|
||||
|
||||
|
||||
/// Quaternion inversion.
|
||||
/** \f[ q^{-1} = \frac{q*}{|q|}. \f] */
|
||||
static inline qpms_quat_t qpms_quat_inv(const qpms_quat_t q) {
|
||||
|
@ -144,6 +145,12 @@ static inline cart3_t qpms_quat_rot_cart3(qpms_quat_t q, const cart3_t v) {
|
|||
qpms_quat_mult(vv, qc)));
|
||||
}
|
||||
|
||||
/// Versor quaternion from rotation vector (norm of the vector is the rotation angle).
|
||||
static inline qpms_quat_t qpms_quat_from_rotvector(cart3_t v) {
|
||||
return qpms_quat_exp(qpms_quat_rscale(0.5,
|
||||
qpms_quat_from_cart3(v)));
|
||||
}
|
||||
|
||||
/// Wigner D matrix element from a rotator quaternion for integer \a l.
|
||||
/**
|
||||
* The D matrix are calculated using formulae (3), (4), (6), (7) from
|
||||
|
|
6
setup.py
6
setup.py
|
@ -98,8 +98,10 @@ setup(name='qpms',
|
|||
packages=['qpms'],
|
||||
# libraries = [('amos', {'sources': amos_sources} )],
|
||||
setup_requires=['cython>=0.28',],
|
||||
install_requires=['cython>=0.28','quaternion','spherical_functions','scipy>=0.18.0', 'sympy>=1.2'],
|
||||
dependency_links=['https://github.com/moble/quaternion/archive/v2.0.tar.gz','https://github.com/moble/spherical_functions/archive/master.zip'],
|
||||
install_requires=['cython>=0.28',
|
||||
#'quaternion','spherical_functions',
|
||||
'scipy>=0.18.0', 'sympy>=1.2'],
|
||||
#dependency_links=['https://github.com/moble/quaternion/archive/v2.0.tar.gz','https://github.com/moble/spherical_functions/archive/master.zip'],
|
||||
ext_modules=cythonize([qpms_c], include_path=['qpms', 'amos'], gdb_debug=True),
|
||||
cmdclass = {'build_ext': build_ext},
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue