Some comments to beyn.c
Former-commit-id: cc756b3343a9290f3b3b8c79cec75559b11a952f
This commit is contained in:
parent
2762ada49c
commit
9d0f910bba
35
qpms/beyn.c
35
qpms/beyn.c
|
@ -104,6 +104,7 @@ BeynSolver *BeynSolver_create(int M, int L)
|
|||
solver->MInvVHat = gsl_matrix_complex_calloc(M,L);
|
||||
solver->VHat = gsl_matrix_complex_calloc(M,L);
|
||||
solver->Sigma = gsl_vector_calloc(L);
|
||||
// Beyn Step 1: Generate random matrix VHat
|
||||
BeynSolver_srandom(solver,(unsigned)time(NULL));
|
||||
|
||||
return solver;
|
||||
|
@ -170,14 +171,11 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
|
||||
int verbose = 1; // TODO
|
||||
|
||||
// A0 -> V0_full * Sigma * W0T_full'
|
||||
// Beyn Step 3: Compute SVD: A0 = V0_full * Sigma * W0T_full
|
||||
if(verbose) printf(" Beyn: computing SVD...\n");
|
||||
gsl_matrix_complex* V0_full = gsl_matrix_complex_alloc(m,l);
|
||||
gsl_matrix_complex_memcpy(V0_full,A0);
|
||||
|
||||
gsl_matrix_complex* W0T_full = gsl_matrix_complex_alloc(l,l);
|
||||
//A0->SVD(Sigma, &V0_full, &W0T_full);
|
||||
|
||||
QPMS_ENSURE(Sigma->stride == 1, "Sigma vector stride must be 1 for LAPACKE_zgesdd, got %zd.", Sigma->stride);
|
||||
QPMS_ENSURE(V0_full->size1 >= V0_full->size2, "m = %zd, l = %zd, what the hell?");
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgesdd(LAPACK_ROW_MAJOR, // A = U*Σ*conjg(V')
|
||||
|
@ -194,6 +192,7 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
));
|
||||
|
||||
|
||||
// Beyn Step 4: Rank test for Sigma
|
||||
// compute effective rank K (number of eigenvalue candidates)
|
||||
int K=0;
|
||||
for (int k=0; k<Sigma->size /* this is l, actually */; k++) {
|
||||
|
@ -207,6 +206,7 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
return 0;
|
||||
}
|
||||
|
||||
// Beyn step 5: B = V0' * A1 * W0 * Sigma^-1
|
||||
// set V0, W0T = matrices of first K right, left singular vectors
|
||||
gsl_matrix_complex *V0 = gsl_matrix_complex_alloc(m,K);
|
||||
gsl_matrix_complex *W0T= gsl_matrix_complex_alloc(K,l);
|
||||
|
@ -222,12 +222,11 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
gsl_matrix_complex_free(V0_full);
|
||||
gsl_matrix_complex_free(W0T_full);
|
||||
|
||||
// B <- V0' * A1 * W0 * Sigma^-1
|
||||
gsl_matrix_complex *TM2 = gsl_matrix_complex_calloc(K,l);
|
||||
gsl_matrix_complex *B = gsl_matrix_complex_calloc(K,K);
|
||||
|
||||
if(verbose) printf(" Multiplying V0*A1->TM...\n");
|
||||
//V0.Multiply(A1, &TM2, "--transA C"); // TM2 <- V0' * A1
|
||||
|
||||
const gsl_complex one = gsl_complex_rect(1,0);
|
||||
const gsl_complex zero = gsl_complex_rect(0,0);
|
||||
gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, one,
|
||||
|
@ -251,8 +250,16 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
gsl_vector_complex_free(tmp);
|
||||
|
||||
//for(int m=0; m<K; m++) // B <- B * Sigma^{-1}
|
||||
|
||||
// B -> S*Lambda*S'
|
||||
|
||||
// Beyn step 6.
|
||||
// Eigenvalue decomposition B -> S*Lambda*S'
|
||||
/* According to Beyn's paper (Algorithm 1), one should check conditioning
|
||||
* of the eigenvalues; if they are ill-conditioned, one should perform
|
||||
* a procedure involving Schur decomposition and reordering.
|
||||
*
|
||||
* Beyn refers to MATLAB routines eig, condeig, schur, ordschur.
|
||||
* I am not sure about the equivalents in LAPACK, TODO check zgeevx, zgeesx.
|
||||
*/
|
||||
if(verbose) printf(" Eigensolving (%i,%i)\n",K,K);
|
||||
|
||||
gsl_vector_complex *Lambda = gsl_vector_complex_alloc(K); // eigenvalues
|
||||
|
@ -285,6 +292,7 @@ static int beyn_process_matrices(BeynSolver *solver, beyn_function_M_gsl_t M_fun
|
|||
gsl_matrix_complex_free(V0);
|
||||
|
||||
// FIXME!!! make clear relation between KRetained and K in the results!
|
||||
// (If they differ, there are possibly some spurious eigenvalues.)
|
||||
int KRetained = 0;
|
||||
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(m, m);
|
||||
gsl_vector_complex *MVk = gsl_vector_complex_alloc(m);
|
||||
|
@ -347,6 +355,8 @@ beyn_result_gsl_t *beyn_solve_gsl(const size_t m, const size_t l,
|
|||
if(N & 1) QPMS_WARN("Contour discretisation point number is odd (%zd),"
|
||||
" the error estimates might be a bit off.", N);
|
||||
|
||||
|
||||
// Beyn Step 2: Computa A0, A1
|
||||
const complex double z0 = contour->centre;
|
||||
for(int n=0; n<N; n++) {
|
||||
const complex double z = contour->z_dz[n][0];
|
||||
|
@ -354,9 +364,6 @@ beyn_result_gsl_t *beyn_solve_gsl(const size_t m, const size_t l,
|
|||
|
||||
gsl_matrix_complex_memcpy(MInvVHat, VHat);
|
||||
|
||||
// Tän pitäis kutsua eval_WT
|
||||
// Output ilmeisesti tallentuun neljänteen parametriin
|
||||
|
||||
if(M_inv_Vhat_function) {
|
||||
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z, params));
|
||||
} else {
|
||||
|
@ -382,7 +389,7 @@ beyn_result_gsl_t *beyn_solve_gsl(const size_t m, const size_t l,
|
|||
gsl_matrix_complex_add(A0_coarse, MInvVHat);
|
||||
}
|
||||
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(z - z0));
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(z - z0)); // A_1 scaling as in Beyn's Remark 3.2(b) for numerical stability.
|
||||
gsl_matrix_complex_add(A1, MInvVHat);
|
||||
if((n%2)==0) {
|
||||
gsl_matrix_complex_add(A1_coarse, MInvVHat);
|
||||
|
@ -394,11 +401,13 @@ beyn_result_gsl_t *beyn_solve_gsl(const size_t m, const size_t l,
|
|||
gsl_vector_complex *eigenvalue_errors = solver->eigenvalue_errors;
|
||||
gsl_matrix_complex *eigenvectors = solver->eigenvectors;
|
||||
|
||||
// Beyn Steps 3–6
|
||||
int K = beyn_process_matrices(solver, M_function, params, A0, A1, z0, eigenvalues, eigenvectors, rank_tol, res_tol);
|
||||
// Repeat Steps 3–6 with rougher contour approximation to get an error estimate.
|
||||
int K_coarse = beyn_process_matrices(solver, M_function, params, A0_coarse, A1_coarse, z0, eigenvalue_errors, eigenvectors, rank_tol, res_tol);
|
||||
|
||||
gsl_blas_zaxpy(gsl_complex_rect(-1,0), eigenvalues, eigenvalue_errors);
|
||||
// TODO Original did also fabs on the complex and real parts ^^^.
|
||||
// Reid did also fabs on the complex and real parts ^^^.
|
||||
|
||||
beyn_result_gsl_t *result;
|
||||
QPMS_CRASHING_MALLOC(result, sizeof(beyn_result_gsl_t));
|
||||
|
|
|
@ -29,7 +29,14 @@ typedef int (*beyn_function_M_inv_Vhat_t)(complex double *target_M_inv_Vhat, siz
|
|||
/// Complex plane integration contour structure.
|
||||
typedef struct beyn_contour_t {
|
||||
size_t n; ///< Number of discretisation points.
|
||||
complex double centre; ///< TODO what is the exact purpose of this?
|
||||
/// "Centre" of the contour.
|
||||
/**
|
||||
* This point is used in the rescaling of the \f$ A_1 \f$ matrix as in
|
||||
* Beyn's Remark 3.2 (b) in order to improve the numerical stability.
|
||||
* It does not have to be a centre in some strictly defined sense,
|
||||
* but it should be "somewhere around" where the contour is.
|
||||
*/
|
||||
complex double centre;
|
||||
complex double z_dz[][2]; ///< Pairs of contour points and derivatives in that points.
|
||||
} beyn_contour_t;
|
||||
|
||||
|
|
Loading…
Reference in New Issue