Permutation group homomorphism – sympy/numpy versio
Former-commit-id: 9fbc18dc9d2e4f22a5450e8e2aca799da45f5698
This commit is contained in:
parent
6314a21eb0
commit
9e30722756
|
@ -0,0 +1,355 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Title
|
||||
Symmetry-adapted basis functions for honeycomb lattice at
|
||||
\begin_inset Formula $K$
|
||||
\end_inset
|
||||
|
||||
-point
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Generation theorem
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let
|
||||
\begin_inset Formula $\mathbf{G}$
|
||||
\end_inset
|
||||
|
||||
be a group and
|
||||
\begin_inset Formula $\Gamma^{i}\left\{ R\to\mathbf{D}^{i}\left(R\right)\right\} $
|
||||
\end_inset
|
||||
|
||||
some
|
||||
\begin_inset Formula $d_{i}$
|
||||
\end_inset
|
||||
|
||||
-dimensional rep of
|
||||
\begin_inset Formula $\mathbf{G}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Let the group ring (corresponding to the given rep indexed by
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
) elements be defined as [Bradley&Cracknell (2.2.2)]
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{ts}^{i}=\frac{d_{i}}{\left|\mathbf{G}\right|}\sum_{R\in\mathbf{G}}\mathbf{D}^{i}\left(R\right)_{ts}^{*}R.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
From [Bradley&Cracknell, theorem 2.2.1]:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If
|
||||
\begin_inset Formula $\phi$
|
||||
\end_inset
|
||||
|
||||
is an arbitrary function of
|
||||
\begin_inset Formula $V$
|
||||
\end_inset
|
||||
|
||||
(a linear space in which the realisation of the group operation act) such
|
||||
that
|
||||
\begin_inset Formula $W_{ss}^{i}\phi\ne0$
|
||||
\end_inset
|
||||
|
||||
(
|
||||
\begin_inset Formula $s$
|
||||
\end_inset
|
||||
|
||||
is fixed and is a number in the range 1 to
|
||||
\begin_inset Formula $d_{i}$
|
||||
\end_inset
|
||||
|
||||
;
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
is idx of the rep) then the funs
|
||||
\begin_inset Formula $W_{ts}^{i}\phi=\phi_{t}^{i}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $t=1$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $d_{i}$
|
||||
\end_inset
|
||||
|
||||
, form a basis for the rep
|
||||
\begin_inset Formula $\Gamma^{i}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Particle-centered transformations
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Now let's see what are the point group actions on SVWF in the origin [Schulz]:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Tabular
|
||||
<lyxtabular version="3" rows="4" columns="3">
|
||||
<features rotate="0" tabularvalignment="middle">
|
||||
<column alignment="center" valignment="top">
|
||||
<column alignment="center" valignment="top">
|
||||
<column alignment="center" valignment="top">
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $Z$
|
||||
\end_inset
|
||||
|
||||
-axis rotation by
|
||||
\begin_inset Formula $2\pi/N$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $C_{N}M_{l}^{m}=e^{\pm?i2\pi m/N}M_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $C_{N}N_{l}^{m}=e^{\pm?i2\pi m/N}N_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Horizontal (xy) reflection
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{h}M_{l}^{m}=\left(-1\right)^{m+l+1}M_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{h}N_{l}^{m}=\left(-1\right)^{m+l}N_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Vertical (yz) reflection
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{yz}M_{l}^{m}=-M_{l}^{-m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{yz}N_{l}^{m}=N_{l}^{-m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Vertical (xz) reflection
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{xz}M_{l}^{m}=\left(-1\right)^{m+1}M_{l}^{-m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sigma_{xz}N_{l}^{m}=\left(-1\right)^{m}N_{l}^{-m}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
</lyxtabular>
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Transformations in a lattice
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue