Permutation group homomorphism – sympy/numpy versio

Former-commit-id: 9fbc18dc9d2e4f22a5450e8e2aca799da45f5698
This commit is contained in:
Marek Nečada 2018-08-08 22:55:07 +03:00
parent 6314a21eb0
commit 9e30722756
1 changed files with 355 additions and 0 deletions

View File

@ -0,0 +1,355 @@
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language swedish
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Symmetry-adapted basis functions for honeycomb lattice at
\begin_inset Formula $K$
\end_inset
-point
\end_layout
\begin_layout Section
Generation theorem
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $\mathbf{G}$
\end_inset
be a group and
\begin_inset Formula $\Gamma^{i}\left\{ R\to\mathbf{D}^{i}\left(R\right)\right\} $
\end_inset
some
\begin_inset Formula $d_{i}$
\end_inset
-dimensional rep of
\begin_inset Formula $\mathbf{G}$
\end_inset
.
Let the group ring (corresponding to the given rep indexed by
\begin_inset Formula $i$
\end_inset
) elements be defined as [Bradley&Cracknell (2.2.2)]
\begin_inset Formula
\[
W_{ts}^{i}=\frac{d_{i}}{\left|\mathbf{G}\right|}\sum_{R\in\mathbf{G}}\mathbf{D}^{i}\left(R\right)_{ts}^{*}R.
\]
\end_inset
\end_layout
\begin_layout Standard
From [Bradley&Cracknell, theorem 2.2.1]:
\end_layout
\begin_layout Standard
If
\begin_inset Formula $\phi$
\end_inset
is an arbitrary function of
\begin_inset Formula $V$
\end_inset
(a linear space in which the realisation of the group operation act) such
that
\begin_inset Formula $W_{ss}^{i}\phi\ne0$
\end_inset
(
\begin_inset Formula $s$
\end_inset
is fixed and is a number in the range 1 to
\begin_inset Formula $d_{i}$
\end_inset
;
\begin_inset Formula $i$
\end_inset
is idx of the rep) then the funs
\begin_inset Formula $W_{ts}^{i}\phi=\phi_{t}^{i}$
\end_inset
,
\begin_inset Formula $t=1$
\end_inset
to
\begin_inset Formula $d_{i}$
\end_inset
, form a basis for the rep
\begin_inset Formula $\Gamma^{i}$
\end_inset
.
\end_layout
\begin_layout Section
Particle-centered transformations
\end_layout
\begin_layout Standard
Now let's see what are the point group actions on SVWF in the origin [Schulz]:
\end_layout
\begin_layout Standard
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="3">
<features rotate="0" tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $Z$
\end_inset
-axis rotation by
\begin_inset Formula $2\pi/N$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $C_{N}M_{l}^{m}=e^{\pm?i2\pi m/N}M_{l}^{m}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $C_{N}N_{l}^{m}=e^{\pm?i2\pi m/N}N_{l}^{m}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Horizontal (xy) reflection
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{h}M_{l}^{m}=\left(-1\right)^{m+l+1}M_{l}^{m}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{h}N_{l}^{m}=\left(-1\right)^{m+l}N_{l}^{m}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Vertical (yz) reflection
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{yz}M_{l}^{m}=-M_{l}^{-m}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{yz}N_{l}^{m}=N_{l}^{-m}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Vertical (xz) reflection
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{xz}M_{l}^{m}=\left(-1\right)^{m+1}M_{l}^{-m}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sigma_{xz}N_{l}^{m}=\left(-1\right)^{m}N_{l}^{-m}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Section
Transformations in a lattice
\end_layout
\begin_layout Standard
\end_layout
\end_body
\end_document