"Basis fields" for finite systems

This commit is contained in:
Marek Nečada 2020-07-23 17:23:23 +03:00
parent f9620e1d11
commit 9e350cdac6
4 changed files with 126 additions and 3 deletions

View File

@ -1066,6 +1066,7 @@ cdef class _ScatteringSystemAtOmegaK:
results[i,2] = res.z
return results.reshape(evalpos.shape)
@boundscheck(False)
def scattered_field_basis(self, evalpos, btyp=QPMS_HANKEL_PLUS):
# TODO examples
"""Evaluate scattered field "basis" (periodic system)
@ -1237,7 +1238,6 @@ cdef class _ScatteringSystemAtOmega:
@boundscheck(False)
def scattered_E(self, scatcoeffvector_full, evalpos, blochvector=None, btyp=QPMS_HANKEL_PLUS, bint alt=False):
# FIXME TODO this obviously does not work for periodic systems
"""Evaluate electric field for a given excitation coefficient vector
Parameters
@ -1288,6 +1288,56 @@ cdef class _ScatteringSystemAtOmega:
results[i,2] = res.z
return results.reshape(evalpos.shape)
@boundscheck(False)
def scattered_field_basis(self, evalpos, blochvector=None, btyp=QPMS_HANKEL_PLUS):
# TODO examples
"""Evaluate scattered field "basis"
This function enables the evaluation of "scattered" fields
generated by the system for many different excitation
coefficients vectors, without the expensive re-evaluation of the respective
translation operators for each excitation coefficient vector.
Parameters
----------
evalpos: array_like of floats and shape (..., 3)
Evaluation points in cartesian coordinates.
blochvector: array_like or None
Bloch vector, must be supplied (non-None) for periodic systems, else None.
btyp: BesselType, optional
Kind of the waves. Defaults to BesselType.HANKEL_PLUS.
Returns
-------
ndarray of complex, with the shape `evalpos.shape[:-1] + (self.fecv_size, 3)`
"Basis" fields at the positions given in `evalpos`, in cartesian coordinates.
"""
if(btyp != QPMS_HANKEL_PLUS):
raise NotImplementedError("Only first kind Bessel function-based fields are supported")
cdef qpms_bessel_t btyp_c = BesselType(btyp)
cdef Py_ssize_t fecv_size = self.fecv_size
evalpos = np.array(evalpos, dtype=float, copy=False)
if evalpos.shape[-1] != 3:
raise ValueError("Last dimension of evalpos has to be 3")
cdef np.ndarray[double,ndim=2] evalpos_a = evalpos.reshape(-1,3)
cdef np.ndarray[complex, ndim=3] results = np.empty((evalpos_a.shape[0], fecv_size, 3), dtype=complex)
cdef ccart3_t *res
res = <ccart3_t *> malloc(fecv_size*sizeof(ccart3_t))
cdef cart3_t pos
cdef Py_ssize_t i, j
with nogil, wraparound(False), parallel():
for i in prange(evalpos_a.shape[0]):
pos.x = evalpos_a[i,0]
pos.y = evalpos_a[i,1]
pos.z = evalpos_a[i,2]
qpms_scatsysw_scattered_field_basis(res, self.ssw, btyp_c, pos)
for j in range(fecv_size):
results[i,j,0] = res[j].x
results[i,j,1] = res[j].y
results[i,j,2] = res[j].z
free(res)
return results.reshape(evalpos.shape[:-1] + (self.fecv_size, 3))
cdef class ScatteringMatrix:
'''

View File

@ -708,6 +708,10 @@ cdef extern from "scatsystem.h":
const cdouble *f_excitation_vector_full, cart3_t where) nogil
ccart3_t qpms_scatsyswk_scattered_E(const qpms_scatsys_at_omega_k_t *sswk, qpms_bessel_t btyp,
const cdouble *f_excitation_vector_full, cart3_t where) nogil
qpms_errno_t qpms_scatsys_scattered_field_basis(ccart3_t *target, const qpms_scatsys_t *ss,
qpms_bessel_t btyp, cdouble wavenumber, cart3_t where) nogil
qpms_errno_t qpms_scatsysw_scattered_field_basis(ccart3_t *target, const qpms_scatsys_at_omega_t *ssw,
qpms_bessel_t btyp, cart3_t where) nogil
qpms_errno_t qpms_scatsyswk_scattered_field_basis(ccart3_t *target, const qpms_scatsys_at_omega_k_t *sswk,
qpms_bessel_t btyp, cart3_t where) nogil
double qpms_ss_adjusted_eta(const qpms_scatsys_t *ss, cdouble wavenumber, const double *wavevector) nogil

View File

@ -2049,6 +2049,38 @@ ccart3_t qpms_scatsysw_scattered_E(const qpms_scatsys_at_omega_t *ssw,
cvf, where);
}
qpms_errno_t qpms_scatsys_scattered_field_basis(
ccart3_t *target,
const qpms_scatsys_t *ss,
const qpms_bessel_t btyp,
const complex double k,
const cart3_t where
) {
qpms_ss_ensure_nonperiodic_a(ss, "qpms_scatsyswk_scattered_field_basis()");
QPMS_UNTESTED;
csphvec_t *vswfs_sph; //Single particle contributions in spherical coordinates
QPMS_CRASHING_CALLOC(vswfs_sph, ss->max_bspecn, sizeof(*vswfs_sph));
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) {
const qpms_vswf_set_spec_t *bspec = qpms_ss_bspec_pi(ss, pi);
const cart3_t particle_pos = ss->p[pi].pos;
const csph_t kr = sph_cscale(k, cart2sph(
cart3_substract(where, particle_pos)));
QPMS_ENSURE_SUCCESS(qpms_uvswf_fill(vswfs_sph, bspec, kr, btyp));
for(size_t i = 0; i < bspec->n; ++i)
target[ss->fecv_pstarts[pi] + i] = csphvec2ccart_csph(vswfs_sph[i], kr);
}
free(vswfs_sph);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_scatsysw_scattered_field_basis(
ccart3_t *target, const qpms_scatsys_at_omega_t *ssw,
const qpms_bessel_t btyp, const cart3_t where) {
return qpms_scatsys_scattered_field_basis(target, ssw->ss, btyp,
ssw->wavenumber, where);
}
#define DIPSPECN 3 // We have three basis vectors
// Evaluates the regular electric dipole waves in the origin. The returned

View File

@ -706,7 +706,7 @@ complex double *qpms_scatsys_incident_field_vector_irrep_packed(
*
* \return Complex electric field at the point defined by \a evalpoint.
*
* \see qpms_scatsysw_scattered_E()
* \see qpms_scatsysw_scattered_E(), qpms_scatsys_scattered_field_basis()
*
* \see qpms_scatsyswk_scattered_E() for periodic systems.
*
@ -727,7 +727,7 @@ ccart3_t qpms_scatsys_scattered_E(
*
* \return Complex electric field at the point defined by \a evalpoint.
*
* \see qpms_scatsys_scattered_E()
* \see qpms_scatsys_scattered_E(), qpms_scatsysw_scattered_field_basis()
*
* \see qpms_scatsyswk_scattered_E() for periodic systems.
*/
@ -738,6 +738,43 @@ ccart3_t qpms_scatsysw_scattered_E(
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
);
/// Evaluates a "basis" for electric field at a given point.
/**
* This function evaluates all the included VSWFs from the particles in the system, evaluated
* at a given point. Taking a linear combination of these with the coefficients \a scattcoeff_full[]
* would be equivalent to the result of qpms_scatsys_scattered_E().
*
* \see qpms_scatsysw_scattered_field_basis()
*
* \see qpms_scatsyswk_scattered_field_basis() for periodic systems.
*
*/
qpms_errno_t qpms_scatsys_scattered_field_basis(
ccart3_t *target, ///< Target array of length \a ss->fecv_size
const qpms_scatsys_t *ss,
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
complex double wavenumber, ///< Wavenumber of the background medium.
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
);
/// Evaluates a "basis" for electric field at a given point.
/**
* This function evaluates all the included VSWFs from the particles in the system, evaluated
* at a given point. Taking a linear combination of these with the coefficients \a scattcoeff_full[]
* would be equivalent to the result of qpms_scatsysw_scattered_E().
*
* \see qpms_scatsys_scattered_field_basis()
*
* \see qpms_scatsyswk_scattered_field_basis() for periodic systems.
*
*/
qpms_errno_t qpms_scatsysw_scattered_field_basis(
ccart3_t *target, ///< Target array of length \a ss->fecv_size
const qpms_scatsys_at_omega_t *ssw,
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
);
/// Evaluates scattered electric field at a point, given a full vector of scattered field coefficients.
/**
* This is an alternative implementation of qpms_scatsys_scattered_E(), and should give the same results