From 9e390e0d30a5a00f5db05a15ef3aef4eb2178ead Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Thu, 22 Dec 2016 08:38:39 +0200 Subject: [PATCH] z sym lattices? Former-commit-id: 3f2148ed9eaac6b4b79a97c5bafee164aeb19df4 --- qpms/lattices.py | 126 ++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 124 insertions(+), 2 deletions(-) diff --git a/qpms/lattices.py b/qpms/lattices.py index 6112e8e..0e45436 100644 --- a/qpms/lattices.py +++ b/qpms/lattices.py @@ -2,6 +2,7 @@ Object oriented approach for the classical multiple scattering problem. ''' import numpy as np +nx = np.newaxis import time import scipy import sys @@ -139,7 +140,7 @@ class Scattering(object): pq_0 = np.broadcast_to(pq_0, (self.N,2,self.nelem)) MP_0 = np.empty((N,2,nelem),dtype=np.complex_) for j in range(self.N): - MP_0[j] = np.tensordot(self.TMatrices[j], pq_0[j],axes=[-2,-1],[-2,-1]) + MP_0[j] = np.tensordot(self.TMatrices[j], pq_0[j],axes=([-2,-1],[-2,-1])) MP_0.shape = (N*2*self.nelem,) solvebtime = _time_b(verbose,step='Solving the linear equation') ab = scipy.linalg.lu_solve(self.lupiv, MP_0) @@ -187,4 +188,125 @@ class Scattering_2D_lattice(Scattering): nelem = lMax * (lMax + 2) #! self.nelem = nelem #! self.prepared = False - self.TMatrices = np.broadcast_to(TMatrices, (self.N,2,nelem,2,nelem)) def __init__(self): + self.TMatrices = np.broadcast_to(TMatrices, (self.N,2,nelem,2,nelem)) + +class Scattering_2D_zsym(Scattering): + def __init__(self, positions, TMatrices, k_0, lMax = None, verbose=False, J_scat=3): + Scattering.__init__(self, positions, TMatrices, k_0, lMax, verbose, J_scat) + #TODO some checks on TMatrices symmetry + self.TE_yz = np.arange(self.nelem) + self.TM_yz = self.TE_yz + self.my, self.ny = get_mn_y(self.lMax) + self.TE_NMz = (self.my + self.ny) % 2 + self.TM_NMz = 1 - self.TE_NMz + # TODO možnost zadávat T-matice rovnou ve zhuštěné podobě + TMatrices_TE = TMatrices[...,TE_NMz[:,nx],TE_yz[:,nx],TE_NMZ[nx,:],TE_yz[nx,:]] + TMatrices_TM = TMatrices[...,TM_NMz[:,nx],TM_yz[:,nx],TM_NMZ[nx,:],TM_yz[nx,:]] + self.TMatrices_TE = np.broadcast_to(TMatrices_TE, (self.N, self.nelem, self.nelem)) + self.TMatrices_TM = np.broadcast_to(TMatrices_TM, (self.N, self.nelem, self.nelem)) + self.prepared_TE = False + self.prepared_TM = False + + def prepare_partial(self, TE_or_TM, keep_interaction_matrix = False, verbose=False): + ''' + TE is 0, TM is 1. + ''' + btime = _time_b(verbose) + if (TE_or_TM == 0): #TE + if not self.prepared_TE: + if not self.interaction_matrix_TE: + self.build_interaction_matrix(0, verbose) + self.lupiv_TE = scipy.linalg.lu_factor(self.interaction_matrix_TE, overwrite_a = not keep_interaction_matrix) + self.prepared_TE = True + if (TE_or_TM == 1): #TM + in not self.prepared_TM: + if not self.interaction_matrix_TM: + self.build_interaction_matrix(1, verbose) + self.lupiv_TM = scipy.linalg.lu_factor(self.interaction_matrix_TM, overwrite_a = not keep_interaction_matrix) + self.prepared_TM = True + _time_e(btime, verbose) + + def prepare(self, keep_interaction_matrix = False, verbose=False): + btime = _time_b(verbose) + if not self.prepared: + self.prepare_partial(0, keep_interaction_matrix, verbose) + self.prepare_partial(1, keep_interaction_matrix, verbose) + self.prepared = True + _time_e(btime, verbose) + + def build_interaction_matrix(self,TE_or_TM = None, verbose = False): + #None means both + btime = _time_b(verbose) + N = self.N + my, ny = get_mn_y(self.lMax) + nelem = len(my) + idm = np.identity(nelem) + if (TE_or_TM == 0): + EoMl = (0,) + elif (TE_or_TM == 1): + EoMl = (1,) + elif (TE_or_TM is None): + EoMl = (0,1) + for EoM in EoMl: + leftmatrix = np.zeros((N,nelem,N,nelem), dtype=complex) + sbtime = _time_b(verbose, step = 'Calculating interparticle translation coefficients, T%s part' % ('M' if EoM else 'E')) + for i in range(N): + for j in range(i): + for yi in range(nelem): + for yj in range(nelem): + d_i2j = cart2sph(self.positions[j]-self.positions[i]) + if ((yi - yj) % 2) == 0: + tr = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) + else: + tr = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) + leftmatrix[j,yj,i,yi] = tr + leftmatrix[i,yi,j,yj] = tr if (0 == (my[yj]+my[yi]) % 2) else -tr + _ time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients, T%s part' % ('M' if EoM else 'E')) + for j in range(N): + leftmatrix = - np.tensordot(self.TMatrices_TM[j] if EoM else self.TMatrices_TE[j],leftmatrix[j], + axes = ([-1],[0])) + leftmatrix[j,:,j,:] += idm + if EoM == 0: + self.interaction_matrix_TE = leftmatrix + if EoM == 1: + self.interaction_matrix_TM = leftmatrix + _time_e(btime, verbose) + + def scatter_partial(self, TE_or_TM, pq_0, verbose = False): + ''' + pq_0 is (N, nelem)-shaped array + ''' + btime = _time_b(verbose) + self.prepare_partial(TE_or_TM, verbose = verbose) + pq_0 = np.broadcast_to(pq_0, (self.N, self.nelem)) + MP_0 = np.empty((self.N,self.nelem),dtype=np.complex_) + for j in range(self.N): + if TE_or_TM: #TM + MP_0[j] = np.tensordot(self.TMatrices_TM[j], pq_0[j], axes=([-1],[-1])) + else: #TE + MP_0[j] = np.tensordot(self.TMatrices_TE[j], pq_0[j], axes=([-1],[-1])) + solvebtime = _time_b(verbose,step='Solving the linear equation') + ab = scipy.linalg.lu_solve(self.lupiv_TM if TE_or_EM else self.lupiv.TE, MP_0) + _time_e(solvebtime, verbose, step='Solving the linear equation') + _time_e(btime,verbose) + return ab + + def scatter(self, pq_0, verbose = False): + ''' + FI7ME + pq_0 is (N, nelem, 2)-shaped array + ''' + btime = _time_b(verbose) + self.prepare(verbose=verbose) + pq_0 = np.broadcast_to(pq_0, (self.N,2,self.nelem)) + MP_0 = np.empty((N,2,nelem),dtype=np.complex_) + for j in range(self.N): + MP_0[j] = np.tensordot(self.TMatrices[j], pq_0[j],axes=([-2,-1],[-2,-1])) + MP_0.shape = (N*2*self.nelem,) + solvebtime = _time_b(verbose,step='Solving the linear equation') + ab = scipy.linalg.lu_solve(self.lupiv, MP_0) + _time_e(solvebtime, verbose, step='Solving the linear equation') + ab.shape = (N,2,nelem) + _time_e(btime, verbose) + return ab +