diff --git a/notes/GF_vs_SWF.lyx b/notes/GF_vs_SWF.lyx index 818a399..cd2b9d0 100644 --- a/notes/GF_vs_SWF.lyx +++ b/notes/GF_vs_SWF.lyx @@ -416,8 +416,8 @@ and mutliplying with dual SH and integrating \begin_inset Formula \begin{align*} \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\ - & =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\ - & =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right) + & =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l'}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right) \end{align*} \end_inset diff --git a/notes/ewald_1D_and_2D_in_3D.lyx b/notes/ewald_1D_and_2D_in_3D.lyx new file mode 100644 index 0000000..e37c2a6 --- /dev/null +++ b/notes/ewald_1D_and_2D_in_3D.lyx @@ -0,0 +1,539 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 584 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language finnish +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a4paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 2cm +\topmargin 2cm +\rightmargin 2cm +\bottommargin 2cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +1D in 3D Ewald sum +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\ud}{\mathrm{d}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\abs}[1]{\left|#1\right|} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uvec}[1]{\hat{\mathbf{#1}}} +\end_inset + + +\lang english + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1}^{#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ushD}[2]{Y'_{#1}^{#2}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\vsh}{\vect A} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vshD}{\vect{A'}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkc}{\vect y} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcout}{\vect u} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcreg}{\vect v} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcreg}{a} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcout}{f} +\end_inset + + +\end_layout + +\begin_layout Section +General formula +\end_layout + +\begin_layout Standard +We need to find the expansion coefficient +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +[Linton, (2.24)] with slightly modified notation and setting +\begin_inset Formula $d_{c}=2$ +\end_inset + +: +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t +\] + +\end_inset + +or, evaluated at point +\begin_inset Formula $\vect s+\vect r$ +\end_inset + + instead +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t +\] + +\end_inset + +The integral can be by substitutions taken into the form +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta +\] + +\end_inset + +Try substitution +\begin_inset Formula $t=\zeta^{2}$ +\end_inset + +: then +\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$ +\end_inset + + ( +\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$ +\end_inset + +) and +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t +\] + +\end_inset + +Try subst. + +\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau +\] + +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Foot +status open + +\begin_layout Plain Layout +[Linton, (2.25)] with slightly modified notation: +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} +\] + +\end_inset + +We want to express an expansion in a shifted point, so let's substitute + +\begin_inset Formula $\vect r\to\vect s+\vect r$ +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} +\] + +\end_inset + + +\end_layout + +\end_inset + +Let's do the integration to get +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau +\] + +\end_inset + +The +\begin_inset Formula $\vect r$ +\end_inset + +-dependent plane wave factor can be also written as +\begin_inset Formula +\begin{align*} +e^{i\vect K\cdot\vect r} & =e^{i\left|\vect K\right|\vect r\cdot\uvec K}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect K\right|\vect r\right)\ush lm\left(\uvec K\right)\\ + & =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec K\right) +\end{align*} + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +or the other way around +\begin_inset Formula +\[ +e^{i\vect K\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec K\right) +\] + +\end_inset + + +\end_layout + +\end_inset + +so +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +We also have +\begin_inset Formula +\begin{align*} +e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\ + & =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{n}, +\end{align*} + +\end_inset + +hence +\begin_inset Formula +\begin{align*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}-n}\ud\tau}_{\Delta_{n}^{\left(d\right)}}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n}^{\left(d\right)}}{n!}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k} +\end{align*} + +\end_inset + +If we label +\begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$ +\end_inset + +, we have +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k} +\] + +\end_inset + +and if we label +\begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$ +\end_inset + + +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k} +\] + +\end_inset + +Now let's put the RHS into +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction formula" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + and try eliminating some sum by taking the limit +\begin_inset Formula $\left|\vect r\right|\to0$ +\end_inset + +. + We have +\begin_inset Formula $j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\sim\left(\left|\vect K\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$ +\end_inset + +; the denominator from +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction formula" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + behaves like +\begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$ +\end_inset + + The leading terms are hence those with +\begin_inset Formula $\left|\vect r\right|^{l-l'+2n-k}$ +\end_inset + +. + So +\begin_inset Formula +\[ +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. +\] + +\end_inset + +Let's now focus on rearranging the sums; we have +\begin_inset Formula +\[ +S(l')\equiv\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,k)=\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,2n-l'+l) +\] + +\end_inset + +We have +\begin_inset Formula $0\le k\le n$ +\end_inset + +, hence +\begin_inset Formula $0\le2n-l'+l\le n$ +\end_inset + +, hence +\begin_inset Formula $-2n\le-l'+l\le-n$ +\end_inset + +, hence also +\begin_inset Formula $l'-2n\le l\le l'-n$ +\end_inset + +, which gives the opportunity to swap the +\begin_inset Formula $l,n$ +\end_inset + + sums and the +\begin_inset Formula $l$ +\end_inset + +-sum becomes finite; so also consuming +\begin_inset Formula $\sum_{k=0}^{n}\delta_{l'-l,2n-k}$ +\end_inset + + we get +\begin_inset Formula +\[ +S(l')=\sum_{n=0}^{\infty}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). +\] + +\end_inset + +Finally, we see that the interval of valid +\begin_inset Formula $l$ +\end_inset + + becomes empty when +\begin_inset Formula $l'-n<0$ +\end_inset + +, i.e. + +\begin_inset Formula $n>l'$ +\end_inset + +; so we get a finite sum +\begin_inset Formula +\[ +S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). +\] + +\end_inset + +Applying rearrangement, +\begin_inset Formula +\[ +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{'}}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}, +\] + +\end_inset + +or replacing the anles with their original definition, +\begin_inset Formula +\[ +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{'}}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}, +\] + +\end_inset + + +\end_layout + +\end_body +\end_document