diff --git a/misc/finiterectlat-constant-driving.py b/misc/finiterectlat-constant-driving.py index 7e67873..d4e1850 100755 --- a/misc/finiterectlat-constant-driving.py +++ b/misc/finiterectlat-constant-driving.py @@ -29,11 +29,10 @@ px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) -defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d" % ( - particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax,) +defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d_micro-%s" % ( + particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted) logging.info("Default file prefix: %s" % defaultprefix) - import numpy as np import qpms from qpms.cybspec import BaseSpec @@ -45,6 +44,27 @@ from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar +def float_nicestr(x, tol=1e-5): + x = float(x) + if .5**2 - abs(x) < tol: + return(("-" if x < 0 else '+') + "2^{-2}") + else: + return "%+.3g" % x + +def cplx_nicestr(x): + x = complex(x) + if x == 0: + return '0' + ret = "" + if x.real: + ret = ret + float_nicestr(x.real) + if x.imag: + ret = ret + float_nicestr(x.imag) + 'i' + if x.real and x.imag: + return '(' + ret + ')' + else: + return ret + def cleanarray(a, atol=1e-10, copy=True): a = np.array(a, copy=copy) sieve = abs(a.real) < atol @@ -94,6 +114,7 @@ if a.symmetry_adapted is not None: for iri1 in range(ss1.nirreps): for j in range(ss1.saecv_sizes[iri1]): pvc1 = np.zeros((ss1.saecv_sizes[iri1],), dtype=complex) + pvc1[j] = 1 fvcs1[y] = ss1.unpack_vector(pvc1, iri1) fvcs1[y] = cleanarray(nicerot(fvcs1[y], copy=False), copy=False) driving_full[y] = (phases[:, None] * fvcs1[y][None,:]).flatten() @@ -148,16 +169,14 @@ t, l, m = bspec.tlm() if not math.isnan(a.ccd_distance): logging.info("Computing the far fields") - ccd_size = (20 * a.ccd_distance / (max(Nx*px, Ny*py) * ssw.wavenumber.real)) if math.isnan(a.ccd_size) else a.ccd_size + ccd_size = (50 * a.ccd_distance / (max(Nx*px, Ny*py) * ssw.wavenumber.real)) if math.isnan(a.ccd_size) else a.ccd_size ccd_x = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij') ccd_points = np.stack(ccd_grid, axis=-1).squeeze(axis=-2) - print(ccd_points.shape) ccd_fields = np.empty((nelem,) + ccd_points.shape, dtype=complex) for y in range(nelem): ccd_fields[y] = ssw.scattered_E(scattered_full[y], ccd_points, btyp=BesselType.HANKEL_PLUS) - print(ccd_fields.shape) logging.info("Far fields done") outfile = defaultprefix + ".npz" if a.output is None else a.output @@ -212,16 +231,18 @@ if a.plot or (a.plot_out is not None): axes[0,4*yp+2].set_title("Fabs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+3].set_title("Farg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) if not math.isnan(a.ccd_distance): - axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) - axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) - axes[0,14].set_title("$E_{z}$ @ $z = %g$" % a.ccd_distance) + #axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) + #axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) + axes[0,12].set_title("$|E_{x}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + axes[0,13].set_title("$|E_{y}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + axes[0,14].set_title("$|E_{z}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) for y in range(nelem): fulvec = scattered_full[y] if a.symmetry_adapted is not None: driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5] - driving_descr = ss1.irrep_names[iris1[y]].join((str(fvcs[y,j]) + -"(%s, %d, %+d) " % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in + driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' + +"(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in driving_nonzero_y)) # TODO shorten the complex number precision else: driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],) @@ -231,29 +252,29 @@ driving_nonzero_y)) # TODO shorten the complex number precision lemax = np.amax(abs(vecgrid)) for yp in range(0,3): if(np.amax(abs(vecgrid[...,yp])) > lemax*1e-5): - axes[y,yp*4].imshow(abs(vecgrid[...,yp]), vmin=0) + axes[y,yp*4].imshow(abs(vecgrid[...,yp]), vmin=0, interpolation='none') axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,yp])), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes) - axes[y,yp*4+1].imshow(np.angle(vecgrid[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) - axes[y,yp*4+2].imshow(abs(vecgrid_ff[...,yp]), vmin=0) - axes[y,yp*4+3].imshow(np.angle(vecgrid_ff[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) + axes[y,yp*4+1].imshow(np.angle(vecgrid[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') + axes[y,yp*4+2].imshow(abs(vecgrid_ff[...,yp]), vmin=0, interpolation='none') + axes[y,yp*4+3].imshow(np.angle(vecgrid_ff[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') else: for c in range(0,4): axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) if not math.isnan(a.ccd_distance): fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2) e2vmax = np.amax(np.linalg.norm(ccd_fields[y], axis=-1)**2) - print(np.sum(abs(ccd_fields[y,...,:2].real)**2).shape) - axes[y, 12].imshow(np.sum(abs(ccd_fields[y,...,:2].real)**2, axis=-1), -origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) - axes[y, 12].streamplot(ccd_points[...,1], ccd_points[...,0], -ccd_fields[y,...,1].real, ccd_fields[y,...,0].real) - axes[y, 13].imshow(np.sum(abs(ccd_fields[y,...,:2].imag)**2, axis=-1) , -origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) - axes[y, 13].streamplot(ccd_points[...,1], ccd_points[...,0], -ccd_fields[y,...,1].imag, ccd_fields[y,...,0].imag) - zplot = abs(ccd_fields[y,...,2])**2 - axes[y, 14].imshow(zplot, origin='lower', extent=fxye, cmap=abscm) - axes[y, 14].text(0.5, 0.5, '%g' % np.amax(zplot)/e2vmax, horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) + xint = abs(ccd_fields[y,...,0])**2 + yint = abs(ccd_fields[y,...,1])**2 + axes[y, 12].imshow(xint, origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm, interpolation='none') + axes[y, 13].imshow(yint, origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm, interpolation='none') + #axes[y, 12].imshow(np.sum(abs(ccd_fields[y,...,:2].real)**2, axis=-1), origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) + #axes[y, 12].quiver(ccd_points[...,1], ccd_points[...,0], ccd_fields[y,...,1].real, ccd_fields[y,...,0].real, color='w') + #axes[y, 13].imshow(np.sum(abs(ccd_fields[y,...,:2].imag)**2, axis=-1) ,origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) + #axes[y, 13].quiver(ccd_points[...,1], ccd_points[...,0],ccd_fields[y,...,1].imag, ccd_fields[y,...,0].imag, color='w') + zint = abs(ccd_fields[y,...,2])**2 + axes[y, 14].imshow(zint, origin='lower', extent=fxye, cmap=abscm, interpolation='none') + axes[y, 14].text(0.5, 0.5, '%g' % (np.amax(zint)/e2vmax), + horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out fig.savefig(plotfile)