From a34f3b37d966249dac0e9960c65a7cda40a306b2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Fri, 12 Jun 2020 16:10:28 +0300 Subject: [PATCH] Ewald 1D in 3D notes Former-commit-id: 771165b42dc07d0681588cf1ee4e047d938c1b45 --- notes/ewald_1D_in_3D.lyx | 444 +++++++++++++++++++++++++++++++++++ notes/ewald_23_z_nonzero.lyx | 6 +- 2 files changed, 447 insertions(+), 3 deletions(-) create mode 100644 notes/ewald_1D_in_3D.lyx diff --git a/notes/ewald_1D_in_3D.lyx b/notes/ewald_1D_in_3D.lyx new file mode 100644 index 0000000..796bf3f --- /dev/null +++ b/notes/ewald_1D_in_3D.lyx @@ -0,0 +1,444 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 584 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language finnish +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a4paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 2cm +\topmargin 2cm +\rightmargin 2cm +\bottommargin 2cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +1D in 3D Ewald sum +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\ud}{\mathrm{d}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\abs}[1]{\left|#1\right|} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uvec}[1]{\hat{\mathbf{#1}}} +\end_inset + + +\lang english + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1}^{#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ushD}[2]{Y'_{#1}^{#2}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\vsh}{\vect A} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vshD}{\vect{A'}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkc}{\vect y} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcout}{\vect u} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcreg}{\vect v} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcreg}{a} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcout}{f} +\end_inset + + +\end_layout + +\begin_layout Standard +[Linton, (2.24)] with slightly modified notation and setting +\begin_inset Formula $d_{c}=2$ +\end_inset + +: +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t +\] + +\end_inset + +or, evaluated at point +\begin_inset Formula $\vect s+\vect r$ +\end_inset + + instead +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t +\] + +\end_inset + +The integral can be by substitutions taken into the form +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta +\] + +\end_inset + +Try substitution +\begin_inset Formula $t=\zeta^{2}$ +\end_inset + +: then +\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$ +\end_inset + + ( +\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$ +\end_inset + +) and +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t +\] + +\end_inset + +Try subst. + +\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau +\] + +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-1}\ud\tau +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Foot +status open + +\begin_layout Plain Layout +[Linton, (2.25)] with slightly modified notation: +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} +\] + +\end_inset + +We want to express an expansion in a shifted point, so let's substitute + +\begin_inset Formula $\vect r\to\vect s+\vect r$ +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} +\] + +\end_inset + + +\end_layout + +\end_inset + +Let's do the integration to get +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau +\] + +\end_inset + +The +\begin_inset Formula $\vect r$ +\end_inset + +-dependent plane wave factor can be also written as +\begin_inset Formula +\begin{align*} +e^{i\vect K\cdot\vect r} & =e^{i\left|\vect K\right|\vect r\cdot\uvec K}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect K\right|\vect r\right)\ush lm\left(\uvec K\right)\\ + & =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec K\right) +\end{align*} + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +or the other way around +\begin_inset Formula +\[ +e^{i\vect K\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec K\right) +\] + +\end_inset + + +\end_layout + +\end_inset + +so +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Now we set the conventions: let the lattice lie on the +\begin_inset Formula $z$ +\end_inset + + axis, so that +\begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$ +\end_inset + + lie in the +\begin_inset Formula $xy$ +\end_inset + +-plane, (TODO check the meaning of +\begin_inset Formula $\vect k$ +\end_inset + + and possible additional phase factor.) If we write +\begin_inset Formula $\vect s_{\bot}=\uvec xs_{\bot}\cos\Phi+\uvec ys_{\bot}\sin\Phi$ +\end_inset + +, +\begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi$ +\end_inset + +, we have +\begin_inset Formula +\[ +\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right). +\] + +\end_inset + +Also, in this convention +\begin_inset Formula $\ush lm\left(\uvec K\right)=0$ +\end_inset + + for +\begin_inset Formula $m\ne0$ +\end_inset + +, so +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{l}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD l0\left(\uvec r\right)\ush l0\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left(s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Let's also fix the spherical harmonics for now, +\begin_inset Formula +\[ +\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +The angular integral (assuming it can be separated from the rest like this) + is +\begin_inset Formula +\[ +I_{l}^{m}\equiv\int\ud\Omega_{\vect r}\,\ushD lm\left(\uvec r\right)e^{i\vect K\cdot\vect r_{\parallel}}e^{-2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +which can be separated even more into two integrals +\begin_inset Formula +\[ +I_{l}^{m}=\lambda'_{lm}\left(\int_{0}^{2\pi}e^{-im\phi}e^{-2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)}\ud\phi\right)\left(\int_{0}^{\pi}P_{l}^{-m}\left(\cos\theta\right)e^{i\left|\vect K\right|\left|\vect r\right|\cos\theta}\sin\theta\,\ud\theta\right) +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/notes/ewald_23_z_nonzero.lyx b/notes/ewald_23_z_nonzero.lyx index 3e2fe3c..99bc0d9 100644 --- a/notes/ewald_23_z_nonzero.lyx +++ b/notes/ewald_23_z_nonzero.lyx @@ -255,7 +255,7 @@ Ewald long range integral Linton has (2.24): \begin_inset Formula \[ -G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta \] \end_inset @@ -275,7 +275,7 @@ Try substitution ) and \begin_inset Formula \[ -G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t \] \end_inset @@ -293,7 +293,7 @@ Try subst. \lang english \begin_inset Formula \[ -G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau \] \end_inset