Generalize point group representation code + some useful groups

Former-commit-id: 086e2142ca248c82999363ecea0555a560113a38
This commit is contained in:
Marek Nečada 2018-12-17 12:14:18 +02:00
parent 324303478c
commit a5739c6e74
1 changed files with 183 additions and 9 deletions

View File

@ -28,6 +28,42 @@ def grouprep_try(tdict, src, im, srcgens, imgens, immultop = None, imcmp = None)
raise ValueError("Homomorphism inconsistency detected")
return
class SVWFPointGroupInfo: # only for point groups, coz in svwf_rep() I use I_tyty, not I_ptypty or something alike
def __init__(self,
name,
permgroupgens, # permutation group generators
irrepgens_dict, # dictionary with irrep generators,
svwf_rep_gen_func, # function that generates a tuple with svwf representation generators
):
self.name = name
self.permgroupgens = permgroupgens
self.permgroup = PermutationGroup(*permgroupgens)
self.irrepgens_dict = irrepgens_dict
self.svwf_rep_gen_func = svwf_rep_gen_func
self.irreps = dict()
for irrepname, irrepgens in irrepgens_dict.items():
is1d = isinstance(irrepgens[0], int)
irrepdim = 1 if is1d else irrepgens[0].shape[0]
self.irreps[irrepname] = generate_grouprep(self.permgroup,
1 if is1d else np.eye(irrepdim),
permgroupgens, irrepgens,
immultop = None if is1d else np.dot,
imcmp = None if is1d else np.allclose
)
def svwf_rep(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
'''
This method generates full SVWF (reducible) representation of the group.
'''
svwfgens = self.svwf_rep_gen_func(lMax, *rep_gen_func_args, **rep_gen_func_kwargs)
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
I_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * np.eye(nelem), 2,1)
return generate_grouprep(self.permgroup, I_tyty, self.permgroupgens, svwfgens, immultop = mmult_tyty, imcmp = np.allclose)
def svwf_irrep_projectors(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
return gen_point_group_svwfrep_projectors(self.permgroup, self.irreps, self.svwf_rep(lMax, *rep_gen_func_args, **rep_gen_func_kwargs))
# srcgroup is expected to be PermutationGroup and srcgens of the TODO
# imcmp returns True if two elements of the image group are 'equal', otherwise False
def generate_grouprep(srcgroup, im_identity, srcgens, imgens, immultop = None, imcmp = None):
@ -42,22 +78,67 @@ def generate_grouprep(srcgroup, im_identity, srcgens, imgens, immultop = None, i
srcgroup.order(), " != ", len(tdict.keys()))
return tdict
# matrices appearing in 2d representations of common groups as used in Bradley, Cracknell p. 61 (with arabic names instead of greek, because lambda is a keyword)
epsilon = np.eye(2)
alif = np.array(((-1/2,-sqrt(3)/2),(sqrt(3)/2,-1/2)))
bih = np.array(((-1/2,sqrt(3)/2),(-sqrt(3)/2,-1/2)))
kaf = np.array(((0,1),(1,0)))
lam = np.array(((1,0),(0,-1)))
ra = np.array(((0,-1),(1,0)))
mim = np.array(((-1/2,-sqrt(3)/2),(-sqrt(3)/2,1/2)))
nun = np.array(((-1/2,sqrt(3)/2),(sqrt(3)/2,1/2)))
# Group D3h
def mmult_tyty(a, b):
return(qpms.apply_ndmatrix_left(a, b, (-4,-3)))
def mmult_ptypty(a, b):
return(qpms.apply_ndmatrix_left(a, b, (-6,-5,-4)))
def gen_point_group_svwfrep_projectors(permgroup, matrix_irreps_dict, sphrep_full):
'''
Gives the projection operators $P_kl('\Gamma')$ from Dresselhaus (4.28)
for all irreps $\Gamma$ of D3h.;
as an array with indices [k,l,t,y,t,y]
Example of creating last argument:
sphrep_full = generate_grouprep(D3h_permgroup, I_tyty, D3h_srcgens, [C3_tyty, vfl_tyty, zfl_tyty],
immultop = mmult_tyty, imcmp = np.allclose)
'''
order = permgroup.order()
sphreps = dict()
nelem = sphrep_full[permgroup[0]].shape[-1] # quite ugly hack
for repkey, matrixrep in matrix_irreps_dict.items():
arepmatrix = matrixrep[permgroup[0]] # just one of the matrices to get the shape etc
if isinstance(arepmatrix, numbers.Number):
dim = 1 # repre dimension
preprocess = lambda x: np.array([[x]])
elif isinstance(arepmatrix, np.ndarray):
if(len(arepmatrix.shape)) != 2 or arepmatrix.shape[0] != arepmatrix.shape[1]:
raise ValueError("Arrays representing irrep matrices must be of square shape")
dim = arepmatrix.shape[0]
preprocess = lambda x: x
else:
raise ValueError("Irrep is not a square array or number")
sphrep = np.zeros((dim,dim,2,nelem,2,nelem), dtype=complex)
for i in permgroup.elements:
sphrep += preprocess(matrixrep[i]).conj().transpose()[:,:,ň,ň,ň,ň] * sphrep_full[i]
sphrep *= dim / order
# clean the nonexact values here
for x in [0, 0.5, -0.5, 0.5j, -0.5j]:
sphrep[np.isclose(sphrep,x)]=x
sphreps[repkey] = sphrep
return sphreps
# Group D3h; mostly legacy code (kept because of the the honeycomb lattice K-point code, whose generalised version not yet implemented)
# Note that the size argument of permutations is necessary, otherwise e.g. c*c and b*b would not be evaluated equal
# N.B. the weird elements as Permutation(N) it means identity permutation of size N+1.
rot3_perm = Permutation(0,1,2, size=5) # C3 rotation
xflip_perm = Permutation(0,2, size=5) # vertical mirror
zflip_perm = Permutation(3,4, size=5) # horizontal mirror
D3h_srcgens = [rot3_perm,xflip_perm,zflip_perm]
D3h_permgroup = PermutationGroup(rot3_perm,xflip_perm,zflip_perm) # D3h
D3h_permgroup = PermutationGroup(*D3h_srcgens) # D3h
D3h_irreps = {
# Bradley, Cracknell p. 61
@ -70,13 +151,7 @@ D3h_irreps = {
"A2''" : generate_grouprep(D3h_permgroup, 1, D3h_srcgens, [1,1,-1]),
}
def mmult_tyty(a, b):
return(qpms.apply_ndmatrix_left(a, b, (-4,-3)))
def mmult_ptypty(a, b):
return(qpms.apply_ndmatrix_left(a, b, (-6,-5,-4)))
#TODO lepší název fce
#TODO lepší název fce; legacy, use group_info['D3h'].generate_grouprep() instead
def gen_point_D3h_svwf_rep(lMax, vflip = 'x'):
'''
Gives the projection operators $P_kl('\Gamma')$ from Dresselhaus (4.28)
@ -216,3 +291,102 @@ def gen_hexlattice_Kpoint_svwf_rep_projectors(lMax, psi, vflip='x', do_bases=Fal
else:
return projectors
point_group_info = { # representation info of some useful point groups
'C2v' : SVWFPointGroupInfo('C2v',
# permutation group generators
(Permutation(0,1, size=4)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
Permutation(0,3, size=4)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
),
# dictionary with irrep generators
{
# Bradley, Cracknell p. 58; not sure about the labels / axes here
'A1': (1,1),
'B2': (-1,1),
'A2': (-1,-1),
'B1': (1,-1),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.xflip_tyty(lMax), qpms.yflip_tyty(lMax))
),
'D2h' : SVWFPointGroupInfo('D2h',
# permutation group generators
(Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
Permutation(0,3, size=6)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
Permutation(4,5, size=6) # z -> - z mirror operation (i.e. xy mirror plane)
),
# dictionary with irrep generators
{
# Product of C2v and zflip; not sure about the labels / axes here
"A1'": (1,1,1),
"B2'": (-1,1,1),
"A2'": (-1,-1,1),
"B1'": (1,-1,1),
"A1''": (-1,-1,-1),
"B2''": (1,-1,-1),
"A2''": (1,1,-1),
"B1''": (-1,1,-1),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.xflip_tyty(lMax), qpms.yflip_tyty(lMax), qpms.zflip_tyty(lMax))
),
'C4v' : SVWFPointGroupInfo('C4v',
# permutation group generators
(Permutation(0,1,2,3, size=4), #C4 rotation
Permutation(0,1, size=4)(2,3)), # x -> - x mirror operation (i.e. yz mirror plane)
# dictionary with irrep generators
{
# Bradley, Cracknell p. 62
'E': (ra, -lam),
# Bradley, Cracknell p. 59, or Dresselhaus, Table A.18
'A1': (1,1),
'A2': (1,-1),
'B1': (-1,1),
'B2': (-1,-1),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.zrotN_tyty(4, lMax), qpms.xflip_tyty(lMax))
),
'D4h' : SVWFPointGroupInfo('D4h',
# permutation group generators
(Permutation(0,1,2,3, size=6), # C4 rotation
Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
Permutation(4,5, size=6), # horizontal mirror operation z -> -z (i.e. xy mirror plane)
),
# dictionary with irrep generators
{ # product of C4v and zflip
"E'": (ra, -lam, epsilon),
"E''":(ra, -lam, -epsilon),
"A1'": (1,1,1),
"A2'": (1,-1,1),
"A1''": (1,-1,-1),
"A2''": (1,1,-1),
"B1'": (-1,1,1),
"B2'": (-1,-1,1),
"B1''": (-1,-1,-1),
"B2''": (-1,1,-1),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.zrotN_tyty(4, lMax), qpms.xflip_tyty(lMax), qpms.zflip_tyty(lMax))
),
'D3h' : SVWFPointGroupInfo('D3h',
# permutation group generators
( Permutation(0,1,2, size=5), # C3 rotation
Permutation(0,2, size=5), # vertical mirror
Permutation(3,4, size=5), # horizontal mirror z -> -z (i.e. xy mirror plane)
),
# dictionary with irrep generators
{ # Bradley, Cracknell p. 61
"E'" : (alif, lam, epsilon),
"E''" : (alif, lam, -epsilon),
# Bradley, Cracknell p. 59, or Dresselhaus, Table A.14 (p. 482)
"A1'" : (1,1,1),
"A2'" : (1,-1,1),
"A1''" : (1,-1,-1),
"A2''" : (1,1,-1),
},
# function that generates a tuple with svwf representation generators
lambda lMax, vflip: (qpms.zrotN_tyty(3, lMax), qpms.yflip_tyty(lMax) if vflip == 'y' else qpms.xflip_tyty(lMax), qpms.zflip_tyty(lMax))
),
}