Fix sign in absorption cross section formula.
Former-commit-id: 695731c1ab4934abf88c6603a696cf5855cd4582
This commit is contained in:
parent
f62ce5f700
commit
a578b04a65
|
@ -135,7 +135,7 @@ Single-particle scattering
|
||||||
In order to define the basic concepts, let us first consider the case of
|
In order to define the basic concepts, let us first consider the case of
|
||||||
electromagnetic (EM) radiation scattered by a single particle.
|
electromagnetic (EM) radiation scattered by a single particle.
|
||||||
We assume that the scatterer lies inside a closed ball
|
We assume that the scatterer lies inside a closed ball
|
||||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
of radius
|
of radius
|
||||||
|
@ -144,16 +144,16 @@ In order to define the basic concepts, let us first consider the case of
|
||||||
|
|
||||||
and center in the origin of the coordinate system (which can be chosen
|
and center in the origin of the coordinate system (which can be chosen
|
||||||
that way; the natural choice of
|
that way; the natural choice of
|
||||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the circumscribed ball of the scatterer) and that there exists a larger
|
is the circumscribed ball of the scatterer) and that there exists a larger
|
||||||
open cocentric ball
|
open cocentric ball
|
||||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, such that the (non-empty) spherical shell
|
, such that the (non-empty) spherical shell
|
||||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is filled with a homogeneous isotropic medium with relative electric permittivi
|
is filled with a homogeneous isotropic medium with relative electric permittivi
|
||||||
|
@ -173,7 +173,7 @@ ty
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
in
|
in
|
||||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
must satisfy the homogeneous vector Helmholtz equation together with the
|
must satisfy the homogeneous vector Helmholtz equation together with the
|
||||||
|
@ -278,8 +278,8 @@ outgoing
|
||||||
, respectively, defined as follows:
|
, respectively, defined as follows:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\vswfrtlm1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh1lm\left(\uvec r\right),\nonumber \\
|
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||||
\vswfrtlm2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -287,8 +287,8 @@ outgoing
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\vswfouttlm1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh1lm\left(\uvec r\right),\nonumber \\
|
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||||
\vswfouttlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
|
@ -323,9 +323,9 @@ vector spherical harmonics
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\vsh1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||||
\vsh2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
||||||
\vsh3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -473,7 +473,7 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
inside a ball
|
inside a ball
|
||||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
with radius
|
with radius
|
||||||
|
@ -483,7 +483,7 @@ noprefix "false"
|
||||||
and center in the origin, were it filled with homogeneous isotropic medium;
|
and center in the origin, were it filled with homogeneous isotropic medium;
|
||||||
however, if the equation is not guaranteed to hold inside a smaller ball
|
however, if the equation is not guaranteed to hold inside a smaller ball
|
||||||
|
|
||||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
around the origin (typically due to presence of a scatterer), one has to
|
around the origin (typically due to presence of a scatterer), one has to
|
||||||
|
@ -492,7 +492,7 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
to have a complete basis of the solutions in the volume
|
to have a complete basis of the solutions in the volume
|
||||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
@ -514,11 +514,11 @@ The single-particle scattering problem at frequency
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
can be posed as follows: Let a scatterer be enclosed inside the ball
|
can be posed as follows: Let a scatterer be enclosed inside the ball
|
||||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and let the whole volume
|
and let the whole volume
|
||||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
be filled with a homogeneous isotropic medium with wave number
|
be filled with a homogeneous isotropic medium with wave number
|
||||||
|
@ -527,7 +527,7 @@ The single-particle scattering problem at frequency
|
||||||
|
|
||||||
.
|
.
|
||||||
Inside
|
Inside
|
||||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, the electric field can be expanded as
|
, the electric field can be expanded as
|
||||||
|
@ -549,7 +549,7 @@ doplnit frekvence a polohy
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
If there were no scatterer and
|
If there were no scatterer and
|
||||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
were filled with the same homogeneous medium, the part with the outgoing
|
were filled with the same homogeneous medium, the part with the outgoing
|
||||||
|
@ -558,7 +558,7 @@ If there were no scatterer and
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
due to sources outside
|
due to sources outside
|
||||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
would remain.
|
would remain.
|
||||||
|
@ -1114,7 +1114,7 @@ literal "true"
|
||||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||||
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
& & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||||
\end{eqnarray}
|
\end{eqnarray}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue