Fix sign in absorption cross section formula.

Former-commit-id: 695731c1ab4934abf88c6603a696cf5855cd4582
This commit is contained in:
Marek Nečada 2019-11-07 00:29:41 +02:00
parent f62ce5f700
commit a578b04a65
1 changed files with 21 additions and 21 deletions

View File

@ -135,7 +135,7 @@ Single-particle scattering
In order to define the basic concepts, let us first consider the case of
electromagnetic (EM) radiation scattered by a single particle.
We assume that the scatterer lies inside a closed ball
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
of radius
@ -144,16 +144,16 @@ In order to define the basic concepts, let us first consider the case of
and center in the origin of the coordinate system (which can be chosen
that way; the natural choice of
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
is the circumscribed ball of the scatterer) and that there exists a larger
open cocentric ball
\begin_inset Formula $\openball{R^{>}}{\vect0}$
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
, such that the (non-empty) spherical shell
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
\end_inset
is filled with a homogeneous isotropic medium with relative electric permittivi
@ -173,7 +173,7 @@ ty
\end_inset
in
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
must satisfy the homogeneous vector Helmholtz equation together with the
@ -278,8 +278,8 @@ outgoing
, respectively, defined as follows:
\begin_inset Formula
\begin{align}
\vswfrtlm1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh3lm\left(\uvec r\right),\label{eq:VSWF regular}
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
\end{align}
\end_inset
@ -287,8 +287,8 @@ outgoing
\begin_inset Formula
\begin{align}
\vswfouttlm1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
\end{align}
@ -323,9 +323,9 @@ vector spherical harmonics
\begin_inset Formula
\begin{align}
\vsh1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
\vsh2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
\vsh3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
\end{align}
\end_inset
@ -473,7 +473,7 @@ noprefix "false"
\end_inset
inside a ball
\begin_inset Formula $\openball{R^{>}}{\vect0}$
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
with radius
@ -483,7 +483,7 @@ noprefix "false"
and center in the origin, were it filled with homogeneous isotropic medium;
however, if the equation is not guaranteed to hold inside a smaller ball
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
around the origin (typically due to presence of a scatterer), one has to
@ -492,7 +492,7 @@ noprefix "false"
\end_inset
to have a complete basis of the solutions in the volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
\end_inset
.
@ -514,11 +514,11 @@ The single-particle scattering problem at frequency
\end_inset
can be posed as follows: Let a scatterer be enclosed inside the ball
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
and let the whole volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
be filled with a homogeneous isotropic medium with wave number
@ -527,7 +527,7 @@ The single-particle scattering problem at frequency
.
Inside
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
, the electric field can be expanded as
@ -549,7 +549,7 @@ doplnit frekvence a polohy
\end_inset
If there were no scatterer and
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
were filled with the same homogeneous medium, the part with the outgoing
@ -558,7 +558,7 @@ If there were no scatterer and
\end_inset
due to sources outside
\begin_inset Formula $\openball{R^{>}}{\vect0}$
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
would remain.
@ -1114,7 +1114,7 @@ literal "true"
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
& & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
\end{eqnarray}
\end_inset