C implementation of the basic point group symmetries in uvswf basis.

Former-commit-id: c5559425bf62f741dce8f59a8dc603872ee701f8
This commit is contained in:
Marek Nečada 2019-02-20 00:58:49 +00:00
parent c0df788628
commit a5b6f5ce34
3 changed files with 215 additions and 4 deletions

View File

@ -51,6 +51,8 @@ static inline qpms_y_t qpms_lMax2nelem_sc(qpms_l_t lmax){
return lmax * ((qpms_y_t)lmax + 2) + 1; return lmax * ((qpms_y_t)lmax + 2) + 1;
} }
// TODO maybe enable crashing / validity control by macro definitions...
/// Conversion from VSWF type, order and degree to universal index. /// Conversion from VSWF type, order and degree to universal index.
static inline qpms_uvswfi_t qpms_tmn2uvswfi( static inline qpms_uvswfi_t qpms_tmn2uvswfi(
qpms_vswf_type_t t, qpms_m_t m, qpms_l_t n) { qpms_vswf_type_t t, qpms_m_t m, qpms_l_t n) {

177
qpms/symmetries.c Normal file
View File

@ -0,0 +1,177 @@
#include "symmetries.h"
#include "tiny_inlines.h"
#include "indexing.h"
// TODO at some point, maybe support also other norms.
// (perhaps just use qpms_normalisation_t_factor() at the right places)
static inline void check_norm_compat(const qpms_vswf_set_spec_t *s)
{
switch (qpms_normalisation_t_normonly(s->norm)) {
case QPMS_NORMALISATION_POWER:
break;
case QPMS_NORMALISATION_SPHARM:
break;
default:
abort(); // Only SPHARM and POWER norms are supported right now.
}
}
complex double *qpms_zflip_uvswi_dense(
complex double *target,
const qpms_vswf_set_spec_t *bspec)
{
check_norm_compat(bspec);
const size_t n = bspec->n;
if (target == NULL)
target = malloc(n * n * sizeof(complex double));
if (target == NULL) abort();
for (size_t row = 0; row < n; row++) {
qpms_vswf_type_t rt;
qpms_l_t rl;
qpms_m_t rm;
qpms_uvswfi2tmn(bspec->ilist[row], &rt, &rm, &rl);
for (size_t col = 0; col < n; col++) {
qpms_vswf_type_t ct;
qpms_l_t cl;
qpms_m_t cm;
if(qpms_uvswfi2tmn(bspec->ilist[col], &ct, &cm, &cl)) abort();
if (rl == cl && rm == cm && rt == ct)
switch(rt) {
case QPMS_VSWF_ELECTRIC:
case QPMS_VSWF_LONGITUDINAL:
target[n*row + col] = min1pow(cm + cl);
break;
case QPMS_VSWF_MAGNETIC:
target[n*row + col] = -min1pow(cm + cl);
break;
default:
abort();
}
else target[n*row + col] = 0;
}
}
return target;
}
complex double *qpms_yflip_uvswi_dense(
complex double *target,
const qpms_vswf_set_spec_t *bspec)
{
check_norm_compat(bspec);
const size_t n = bspec->n;
if (target == NULL)
target = malloc(n * n * sizeof(complex double));
if (target == NULL) abort();
for (size_t row = 0; row < n; row++) {
qpms_vswf_type_t rt;
qpms_l_t rl;
qpms_m_t rm;
qpms_uvswfi2tmn(bspec->ilist[row], &rt, &rm, &rl);
for (size_t col = 0; col < n; col++) {
qpms_vswf_type_t ct;
qpms_l_t cl;
qpms_m_t cm;
if(qpms_uvswfi2tmn(bspec->ilist[col], &ct, &cm, &cl)) abort();
if (rl == cl && rm == -cm && rt == ct)
switch(rt) {
case QPMS_VSWF_ELECTRIC:
case QPMS_VSWF_LONGITUDINAL:
target[n*row + col] = min1pow(rm);
break;
case QPMS_VSWF_MAGNETIC:
target[n*row + col] = -min1pow(rm);
break;
default:
abort();
}
else target[n*row + col] = 0;
}
}
return target;
}
complex double *qpms_xflip_uvswi_dense(
complex double *target,
const qpms_vswf_set_spec_t *bspec)
{
check_norm_compat(bspec);
const size_t n = bspec->n;
if (target == NULL)
target = malloc(n * n * sizeof(complex double));
if (target == NULL) abort();
for (size_t row = 0; row < n; row++) {
qpms_vswf_type_t rt;
qpms_l_t rl;
qpms_m_t rm;
qpms_uvswfi2tmn(bspec->ilist[row], &rt, &rm, &rl);
for (size_t col = 0; col < n; col++) {
qpms_vswf_type_t ct;
qpms_l_t cl;
qpms_m_t cm;
if(qpms_uvswfi2tmn(bspec->ilist[col], &ct, &cm, &cl)) abort();
if (rl == cl && rm == -cm && rt == ct)
switch(rt) {
case QPMS_VSWF_ELECTRIC:
case QPMS_VSWF_LONGITUDINAL:
target[n*row + col] = 1;
break;
case QPMS_VSWF_MAGNETIC:
target[n*row + col] = -1;
break;
default:
abort();
}
else target[n*row + col] = 0;
}
}
return target;
}
// Dense matrix representation of a rotation around the z-axis
complex double *qpms_zrot_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec,
double phi ///< Rotation angle
)
{
check_norm_compat(bspec);
const size_t n = bspec->n;
if (target == NULL)
target = malloc(n * n * sizeof(complex double));
if (target == NULL) abort();
for (size_t row = 0; row < n; row++) {
qpms_vswf_type_t rt;
qpms_l_t rl;
qpms_m_t rm;
qpms_uvswfi2tmn(bspec->ilist[row], &rt, &rm, &rl);
for (size_t col = 0; col < n; col++) {
qpms_vswf_type_t ct;
qpms_l_t cl;
qpms_m_t cm;
if(qpms_uvswfi2tmn(bspec->ilist[col], &ct, &cm, &cl)) abort();
if (rl == cl && rm == cm && rt == ct) // TODO COMPARE WITH PYTHON
target[n*row + col] = cexp(/* - ?*/I * rm * phi);
else target[n*row + col] = 0;
}
}
return target;
}
// Dense matrix representation of a "rational" rotation around the z-axis
/* Just for convenience. Corresponds to the angle \f$ \phi = 2\piw/N \f$.
*/
complex double *qpms_zrot_rational_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec,
int N,
int w
)
{
double phi = 2 * M_PI * w / N;
return qpms_zrot_uvswi_dense(target, bspec, phi);
}

View File

@ -1,10 +1,10 @@
#ifndef SYMMETRIES_H /*! \file symmetries.h
#define SYMMETRIES_H * \brief Functions providing point group operations operating on translation
/* TODO. * operators and T-matrices.
* *
* Here will be functions providing point group operations * Here will be functions providing point group operations
* operating on translation operators and T-matrices * operating on translation operators and T-matrices
* as in tmatrices.py. * similar to tmatrices.py.
* *
* At least I want: * At least I want:
* - Wigner D matrices * - Wigner D matrices
@ -19,5 +19,37 @@
* *
* *
*/ */
#ifndef SYMMETRIES_H
#define SYMMETRIES_H
#include "vswf.h"
#include <cblas.h>
/// Dense matrix representation of the z coordinate sign flip operation (xy-plane mirroring).
complex double *qpms_zflip_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec);
/// Dense matrix representation of the y coordinate sign flip operation (xz-plane mirroring).
complex double *qpms_yflip_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec);
/// Dense matrix representation of the x coordinate sign flip operation (yz-plane mirroring).
complex double *qpms_xflip_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec);
/// Dense matrix representation of a rotation around the z-axis
complex double *qpms_zrot_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec,
double phi ///< Rotation angle
);
/// Dense matrix representation of a "rational" rotation around the z-axis
/** Just for convenience. Corresponds to the angle \f$ \phi = 2\piw/N \f$.
*/
complex double *qpms_zrot_rational_uvswi_dense(
complex double *target, ///< If NULL, a new array is allocated.
const qpms_vswf_set_spec_t *bspec,
int N,
int w
);
#endif // SYMMETRIES_H #endif // SYMMETRIES_H