diff --git a/lepaper/symmetries.lyx b/lepaper/symmetries.lyx index 6d7ee9a..935eb86 100644 --- a/lepaper/symmetries.lyx +++ b/lepaper/symmetries.lyx @@ -758,7 +758,21 @@ If the particle indices are ordered in a way that the particles belonging \begin_inset Formula $J\left(g\right)$ \end_inset - will be a block-diagonal matrix, each block representing one particle orbit. + will be a block-diagonal unitary matrix, each block (also unitary) representing + the action of +\begin_inset Formula $g$ +\end_inset + + on one particle orbit. + All the +\begin_inset Formula $J\left(g\right)$ +\end_inset + +s make together a (reducible) linear representation of +\begin_inset Formula $G$ +\end_inset + +. \end_layout \begin_layout Subsection @@ -767,7 +781,7 @@ Irrep decomposition \begin_layout Standard Knowledge of symmetry group actions -\begin_inset Formula $D\left(g\right)$ +\begin_inset Formula $J\left(g\right)$ \end_inset on the field expansion coefficients give us the possibility to construct @@ -776,11 +790,251 @@ ing problem matrix \begin_inset Formula $\left(I-TS\right)$ \end_inset +. + Let +\begin_inset Formula $\Gamma_{n}$ +\end_inset + + be the +\begin_inset Formula $d_{n}$ +\end_inset + +-dimensional irreducible matrix representations of +\begin_inset Formula $G$ +\end_inset + +consisting of matrices +\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$ +\end_inset + +. + Then the projection operators +\begin_inset Formula +\[ +P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n} +\] + +\end_inset + +project the full scattering system field expansion coefficient vectors +\begin_inset Formula $\rcoeff,\outcoeff$ +\end_inset + + onto a subspace corresponding to the irreducible representation +\begin_inset Formula $\Gamma_{n}$ +\end_inset + +. + The projectors can be used to construct a unitary transformation +\begin_inset Formula $U$ +\end_inset + + with components +\begin_inset Formula +\begin{equation} +U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator} +\end{equation} + +\end_inset + +where +\begin_inset Formula $r$ +\end_inset + + goes from +\begin_inset Formula $1$ +\end_inset + + through +\begin_inset Formula $d_{n}$ +\end_inset + + and +\begin_inset Formula $i$ +\end_inset + + goes from 1 through the multiplicity of irreducible representation +\begin_inset Formula $\Gamma_{n}$ +\end_inset + + in the (reducible) representation of +\begin_inset Formula $G$ +\end_inset + + spanned by the field expansion coefficients +\begin_inset Formula $\rcoeff$ +\end_inset + + or +\begin_inset Formula $\outcoeff$ +\end_inset + +. + The indices +\begin_inset Formula $p',\tau',l',m'$ +\end_inset + + are given by an arbitrary bijective mapping +\begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$ +\end_inset + + with the constraint that for given +\begin_inset Formula $n,r,i$ +\end_inset + + there are at least some non-zero elements +\begin_inset Formula $U_{nri;p\tau lm}$ +\end_inset + +. + For details, we refer the reader to textbooks about group representation + theory +\begin_inset Note Note +status open + +\begin_layout Plain Layout +or linear representations? +\end_layout + +\end_inset + +, e.g. + +\begin_inset CommandInset citation +LatexCommand cite +after "Chapter 4" +key "dresselhaus_group_2008" +literal "false" + +\end_inset + + or +\begin_inset CommandInset citation +LatexCommand cite +after "???" +key "bradley_mathematical_1972" +literal "false" + +\end_inset + +. + The transformation given by +\begin_inset Formula $U$ +\end_inset + + transforms the excitation coefficient vectors +\begin_inset Formula $\rcoeff,\outcoeff$ +\end_inset + + into a new, +\emph on +symmetry-adapted basis +\emph default . \end_layout \begin_layout Standard +One can show that if an operator +\begin_inset Formula $M$ +\end_inset + + acting on the excitation coefficient vectors is invariant under the operations + of group +\begin_inset Formula $G$ +\end_inset + +, meaning that +\begin_inset Formula +\[ +\forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M, +\] + +\end_inset + +then in the symmetry-adapted basis, +\begin_inset Formula $M$ +\end_inset + + is block diagonal, or more specifically +\begin_inset Formula +\[ +M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}. +\] + +\end_inset + +Both the +\begin_inset Formula $T$ +\end_inset + + and +\begin_inset Formula $\trops$ +\end_inset + + operators (and trivially also the identity +\begin_inset Formula $I$ +\end_inset + +) in +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Multiple-scattering problem block form" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + are invariant under the actions of whole system symmetry group, so +\begin_inset Formula $\left(I-T\trops\right)$ +\end_inset + + is also invariant, hence +\begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$ +\end_inset + + is a block-diagonal matrix, and the problem +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Multiple-scattering problem block form" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + can be solved for each block separately. +\end_layout + +\begin_layout Standard +From the computational perspective, it is important to note that +\begin_inset Formula $U$ +\end_inset + + is at least as sparse as +\begin_inset Formula $J\left(g\right)$ +\end_inset + + (which is +\begin_inset Quotes eld +\end_inset + +orbit-block +\begin_inset Quotes erd +\end_inset + + diagonal), hence the block-diagonalisation can be performed fast. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Kvantifikovat! +\end_layout + +\end_inset + \end_layout