Irrep decomposition
Former-commit-id: aedcdb912573500bcba434ce088ce10887052bd1
This commit is contained in:
parent
526e108ec0
commit
a659e5b1fb
|
@ -758,7 +758,21 @@ If the particle indices are ordered in a way that the particles belonging
|
|||
\begin_inset Formula $J\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
will be a block-diagonal matrix, each block representing one particle orbit.
|
||||
will be a block-diagonal unitary matrix, each block (also unitary) representing
|
||||
the action of
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
on one particle orbit.
|
||||
All the
|
||||
\begin_inset Formula $J\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
s make together a (reducible) linear representation of
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -767,7 +781,7 @@ Irrep decomposition
|
|||
|
||||
\begin_layout Standard
|
||||
Knowledge of symmetry group actions
|
||||
\begin_inset Formula $D\left(g\right)$
|
||||
\begin_inset Formula $J\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
on the field expansion coefficients give us the possibility to construct
|
||||
|
@ -776,11 +790,251 @@ ing problem matrix
|
|||
\begin_inset Formula $\left(I-TS\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Let
|
||||
\begin_inset Formula $\Gamma_{n}$
|
||||
\end_inset
|
||||
|
||||
be the
|
||||
\begin_inset Formula $d_{n}$
|
||||
\end_inset
|
||||
|
||||
-dimensional irreducible matrix representations of
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
consisting of matrices
|
||||
\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Then the projection operators
|
||||
\begin_inset Formula
|
||||
\[
|
||||
P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
project the full scattering system field expansion coefficient vectors
|
||||
\begin_inset Formula $\rcoeff,\outcoeff$
|
||||
\end_inset
|
||||
|
||||
onto a subspace corresponding to the irreducible representation
|
||||
\begin_inset Formula $\Gamma_{n}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The projectors can be used to construct a unitary transformation
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
with components
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
goes from
|
||||
\begin_inset Formula $1$
|
||||
\end_inset
|
||||
|
||||
through
|
||||
\begin_inset Formula $d_{n}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
goes from 1 through the multiplicity of irreducible representation
|
||||
\begin_inset Formula $\Gamma_{n}$
|
||||
\end_inset
|
||||
|
||||
in the (reducible) representation of
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
spanned by the field expansion coefficients
|
||||
\begin_inset Formula $\rcoeff$
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset Formula $\outcoeff$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The indices
|
||||
\begin_inset Formula $p',\tau',l',m'$
|
||||
\end_inset
|
||||
|
||||
are given by an arbitrary bijective mapping
|
||||
\begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$
|
||||
\end_inset
|
||||
|
||||
with the constraint that for given
|
||||
\begin_inset Formula $n,r,i$
|
||||
\end_inset
|
||||
|
||||
there are at least some non-zero elements
|
||||
\begin_inset Formula $U_{nri;p\tau lm}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For details, we refer the reader to textbooks about group representation
|
||||
theory
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
or linear representations?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
, e.g.
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "Chapter 4"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "???"
|
||||
key "bradley_mathematical_1972"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The transformation given by
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
transforms the excitation coefficient vectors
|
||||
\begin_inset Formula $\rcoeff,\outcoeff$
|
||||
\end_inset
|
||||
|
||||
into a new,
|
||||
\emph on
|
||||
symmetry-adapted basis
|
||||
\emph default
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
One can show that if an operator
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
acting on the excitation coefficient vectors is invariant under the operations
|
||||
of group
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
, meaning that
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M,
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
then in the symmetry-adapted basis,
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
is block diagonal, or more specifically
|
||||
\begin_inset Formula
|
||||
\[
|
||||
M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Both the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\trops$
|
||||
\end_inset
|
||||
|
||||
operators (and trivially also the identity
|
||||
\begin_inset Formula $I$
|
||||
\end_inset
|
||||
|
||||
) in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
are invariant under the actions of whole system symmetry group, so
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
is also invariant, hence
|
||||
\begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$
|
||||
\end_inset
|
||||
|
||||
is a block-diagonal matrix, and the problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be solved for each block separately.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
From the computational perspective, it is important to note that
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
is at least as sparse as
|
||||
\begin_inset Formula $J\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
(which is
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
orbit-block
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
diagonal), hence the block-diagonalisation can be performed fast.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Kvantifikovat!
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
|
Loading…
Reference in New Issue