Irrep decomposition

Former-commit-id: aedcdb912573500bcba434ce088ce10887052bd1
This commit is contained in:
Marek Nečada 2019-08-01 08:21:00 +03:00
parent 526e108ec0
commit a659e5b1fb
1 changed files with 256 additions and 2 deletions

View File

@ -758,7 +758,21 @@ If the particle indices are ordered in a way that the particles belonging
\begin_inset Formula $J\left(g\right)$
\end_inset
will be a block-diagonal matrix, each block representing one particle orbit.
will be a block-diagonal unitary matrix, each block (also unitary) representing
the action of
\begin_inset Formula $g$
\end_inset
on one particle orbit.
All the
\begin_inset Formula $J\left(g\right)$
\end_inset
s make together a (reducible) linear representation of
\begin_inset Formula $G$
\end_inset
.
\end_layout
\begin_layout Subsection
@ -767,7 +781,7 @@ Irrep decomposition
\begin_layout Standard
Knowledge of symmetry group actions
\begin_inset Formula $D\left(g\right)$
\begin_inset Formula $J\left(g\right)$
\end_inset
on the field expansion coefficients give us the possibility to construct
@ -776,11 +790,251 @@ ing problem matrix
\begin_inset Formula $\left(I-TS\right)$
\end_inset
.
Let
\begin_inset Formula $\Gamma_{n}$
\end_inset
be the
\begin_inset Formula $d_{n}$
\end_inset
-dimensional irreducible matrix representations of
\begin_inset Formula $G$
\end_inset
consisting of matrices
\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
\end_inset
.
Then the projection operators
\begin_inset Formula
\[
P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n}
\]
\end_inset
project the full scattering system field expansion coefficient vectors
\begin_inset Formula $\rcoeff,\outcoeff$
\end_inset
onto a subspace corresponding to the irreducible representation
\begin_inset Formula $\Gamma_{n}$
\end_inset
.
The projectors can be used to construct a unitary transformation
\begin_inset Formula $U$
\end_inset
with components
\begin_inset Formula
\begin{equation}
U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator}
\end{equation}
\end_inset
where
\begin_inset Formula $r$
\end_inset
goes from
\begin_inset Formula $1$
\end_inset
through
\begin_inset Formula $d_{n}$
\end_inset
and
\begin_inset Formula $i$
\end_inset
goes from 1 through the multiplicity of irreducible representation
\begin_inset Formula $\Gamma_{n}$
\end_inset
in the (reducible) representation of
\begin_inset Formula $G$
\end_inset
spanned by the field expansion coefficients
\begin_inset Formula $\rcoeff$
\end_inset
or
\begin_inset Formula $\outcoeff$
\end_inset
.
The indices
\begin_inset Formula $p',\tau',l',m'$
\end_inset
are given by an arbitrary bijective mapping
\begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$
\end_inset
with the constraint that for given
\begin_inset Formula $n,r,i$
\end_inset
there are at least some non-zero elements
\begin_inset Formula $U_{nri;p\tau lm}$
\end_inset
.
For details, we refer the reader to textbooks about group representation
theory
\begin_inset Note Note
status open
\begin_layout Plain Layout
or linear representations?
\end_layout
\end_inset
, e.g.
\begin_inset CommandInset citation
LatexCommand cite
after "Chapter 4"
key "dresselhaus_group_2008"
literal "false"
\end_inset
or
\begin_inset CommandInset citation
LatexCommand cite
after "???"
key "bradley_mathematical_1972"
literal "false"
\end_inset
.
The transformation given by
\begin_inset Formula $U$
\end_inset
transforms the excitation coefficient vectors
\begin_inset Formula $\rcoeff,\outcoeff$
\end_inset
into a new,
\emph on
symmetry-adapted basis
\emph default
.
\end_layout
\begin_layout Standard
One can show that if an operator
\begin_inset Formula $M$
\end_inset
acting on the excitation coefficient vectors is invariant under the operations
of group
\begin_inset Formula $G$
\end_inset
, meaning that
\begin_inset Formula
\[
\forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M,
\]
\end_inset
then in the symmetry-adapted basis,
\begin_inset Formula $M$
\end_inset
is block diagonal, or more specifically
\begin_inset Formula
\[
M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
Both the
\begin_inset Formula $T$
\end_inset
and
\begin_inset Formula $\trops$
\end_inset
operators (and trivially also the identity
\begin_inset Formula $I$
\end_inset
) in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
are invariant under the actions of whole system symmetry group, so
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
is also invariant, hence
\begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$
\end_inset
is a block-diagonal matrix, and the problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be solved for each block separately.
\end_layout
\begin_layout Standard
From the computational perspective, it is important to note that
\begin_inset Formula $U$
\end_inset
is at least as sparse as
\begin_inset Formula $J\left(g\right)$
\end_inset
(which is
\begin_inset Quotes eld
\end_inset
orbit-block
\begin_inset Quotes erd
\end_inset
diagonal), hence the block-diagonalisation can be performed fast.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Kvantifikovat!
\end_layout
\end_inset
\end_layout