From a6e90b43ae649e994bc789634e2958420637afd2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 30 Jul 2019 08:48:57 +0300 Subject: [PATCH] Infinite lattices WIP Former-commit-id: d7afe75b6a8dc2d4ad38b607446c7ab675391b0c --- lepaper/arrayscat.lyx | 23 +++++ lepaper/finite.lyx | 13 ++- lepaper/infinite.lyx | 225 ++++++++++++++++++++++++------------------ 3 files changed, 164 insertions(+), 97 deletions(-) diff --git a/lepaper/arrayscat.lyx b/lepaper/arrayscat.lyx index 9262776..a96fa72 100644 --- a/lepaper/arrayscat.lyx +++ b/lepaper/arrayscat.lyx @@ -149,11 +149,25 @@ \end_inset +\begin_inset Note Note +status open + +\begin_layout Plain Layout \begin_inset FormulaMacro \newcommand{\dc}[1]{Ш_{#1}} \end_inset +\end_layout + +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\dc}[1]{|||_{#1}} +\end_inset + + \begin_inset FormulaMacro \newcommand{\rec}[1]{#1^{-1}} \end_inset @@ -379,6 +393,11 @@ \end_inset +\begin_inset FormulaMacro +\newcommand{\antidelta}{\gamma} +\end_inset + + \end_layout \begin_layout Standard @@ -705,6 +724,10 @@ Example results. Concrete comparison with other methods. \end_layout +\begin_layout Itemize +Fix notation (mainly index) clashes in infinite lattices. +\end_layout + \begin_layout Standard \begin_inset CommandInset include LatexCommand include diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index b5c651d..8a63351 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -1149,7 +1149,7 @@ where \begin_inset Formula $I$ \end_inset - is the identity matrix and + is the identity matrix, \begin_inset Formula $T$ \end_inset @@ -1157,7 +1157,16 @@ is a block-diagonal matrix containing all the individual \begin_inset Formula $T$ \end_inset --matrices. +-matrices, and +\begin_inset Formula $\trops$ +\end_inset + + contains the individual +\begin_inset Formula $\tropsp pq$ +\end_inset + +matrices as the off-diagonal blocks, whereas the diagonal blocks are set + to zeros. \end_layout \begin_layout Standard diff --git a/lepaper/infinite.lyx b/lepaper/infinite.lyx index 2f1811c..b84ea21 100644 --- a/lepaper/infinite.lyx +++ b/lepaper/infinite.lyx @@ -96,7 +96,7 @@ \begin_layout Section Infinite periodic systems \begin_inset FormulaMacro -\newcommand{\dlv}{\vect b} +\newcommand{\dlv}{\vect a} \end_inset @@ -135,6 +135,10 @@ Topology anoyne? Notation \end_layout +\begin_layout Standard +TODO Fourier transforms, Delta comb, lattice bases etc. +\end_layout + \begin_layout Subsection Formulation of the problem \end_layout @@ -151,7 +155,7 @@ noprefix "false" \end_inset -, but this time, system shall be periodic: let there be a +, but this time, the system shall be periodic: let there be a \begin_inset Formula $d$ \end_inset @@ -160,110 +164,131 @@ noprefix "false" \end_inset can be 1, 2 or 3) lattice embedded into the three-dimensional real space, - with lattice vectors. - set of + with lattice vectors +\begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$ +\end_inset + +, and let the lattice points be labeled with an \begin_inset Formula $d$ \end_inset - (one to three) lattice vectorsAssume a system of compact EM scatterers - in otherwise homogeneous and isotropic medium, and assume that the system, - i.e. - both the medium and the scatterers, have linear response. - A scattering problem in such system can be written as -\begin_inset Formula -\[ -A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α}) -\] - +-dimensional integar multiindex +\begin_inset Formula $\vect n\in\ints^{d}$ \end_inset -where -\begin_inset Formula $T_{α}$ -\end_inset - - is the -\begin_inset Formula $T$ -\end_inset - --matrix for scatterer α, -\begin_inset Formula $A_{α}$ -\end_inset - - is its vector of the scattered wave expansion coefficient (the multipole - indices are not explicitely indicated here) and -\begin_inset Formula $P_{α}$ -\end_inset - - is the local expansion of the incoming sources. - -\begin_inset Formula $S_{α\leftarrowβ}$ -\end_inset - - is ... - and ... - is ... -\end_layout - -\begin_layout Standard -... -\end_layout - -\begin_layout Standard -\begin_inset Formula -\[ -\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Now suppose that the scatterers constitute an infinite lattice -\end_layout - -\begin_layout Standard -\begin_inset Formula -\[ -\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}. -\] - -\end_inset - -Due to the periodicity, we can write -\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$ -\end_inset - - and -\begin_inset Formula $T_{\vect aα}=T_{\alpha}$ +, so the lattice points have cartesian coordinates +\begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$ \end_inset . - In order to find lattice modes, we search for solutions with zero RHS + There can be several scatterers per unit cell with indices +\begin_inset Formula $\alpha$ +\end_inset + + from set +\begin_inset Formula $\mathcal{P}_{1}$ +\end_inset + + and (relative) positions inside the unit cell +\begin_inset Formula $\vect r_{\alpha}$ +\end_inset + +; any particle of the periodic system can thus be labeled by a multiindex + from +\begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$ +\end_inset + +. + The scatterers are located at positions +\begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$ +\end_inset + + and their +\begin_inset Formula $T$ +\end_inset + +-matrices are periodic, +\begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$ +\end_inset + +. + In such system, the multiple-scattering problem +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:Multiple-scattering problem" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + can be rewritten as +\end_layout + +\begin_layout Standard \begin_inset Formula -\[ -\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0 -\] +\begin{equation} +\outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic} +\end{equation} \end_inset -and we assume periodic solution -\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$ + +\end_layout + +\begin_layout Standard +Due to periodicity, we can also write +\begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$ \end_inset -, yielding +. + Assuming quasi-periodic right-hand side with quasi-momentum +\begin_inset Formula $\vect k$ +\end_inset + +, +\begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$ +\end_inset + +, the solutions of +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:Multiple-scattering problem periodic" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + will be also quasi-periodic according to Bloch theorem, +\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$ +\end_inset + +, and eq. + +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:Multiple-scattering problem periodic" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + can be rewritten as follows \begin_inset Formula -\begin{eqnarray*} -\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\ -\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\ -\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\ -A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0. -\end{eqnarray*} +\begin{align*} +\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\\ +\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\ +\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\ +\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right), +\end{align*} \end_inset -Therefore, in order to solve the modes, we need to compute the +so we reduced the initial scattering problem to one involving only the field + expansion coefficients from a single unit cell, but we need to compute + the \begin_inset Quotes eld \end_inset @@ -274,7 +299,7 @@ lattice Fourier transform of the translation operator, \begin_inset Formula \begin{equation} -W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition} +W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}}.\label{eq:W definition} \end{equation} \end_inset @@ -295,14 +320,18 @@ reference "eq:W definition" \end_inset is the asymptotic behaviour of the translation operator, -\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$ +\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$ \end_inset - that makes the convergence of the sum quite problematic for any + that does not in the strict sense converge for any \begin_inset Formula $d>1$ \end_inset -dimensional lattice. +\begin_inset Note Note +status open + +\begin_layout Plain Layout \begin_inset Foot status open @@ -318,11 +347,17 @@ Note that \end_inset - In electrostatics, one can solve this problem with Ewald summation. + +\end_layout + +\end_inset + + In electrostatics, this problem can be solved with Ewald summation [TODO + REF]. Its basic idea is that if what asymptoticaly decays poorly in the direct space, will perhaps decay fast in the Fourier space. - I use the same idea here, but everything will be somehow harder than in - electrostatics. + We use the same idea here, but the technical details are more complicated + than in electrostatics. \end_layout \begin_layout Standard @@ -520,7 +555,7 @@ reference "eq:W definition" \end_inset - and legendre + and \begin_inset CommandInset ref LatexCommand eqref reference "eq:W sum in reciprocal space"