Finite system cross sections done

Former-commit-id: bf5afd2dfbcadf4aede6550ffd5e0fc5d030e3e1
This commit is contained in:
Marek Nečada 2019-07-28 11:26:12 +03:00
parent 81fdc50dc0
commit a6e9cbc351
1 changed files with 147 additions and 3 deletions

View File

@ -469,6 +469,21 @@ with expansion coefficients
\end_inset \end_inset
\end_layout
\begin_layout Subsection
Multiple-scattering problem
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
\end{equation}
\end_inset
\end_layout \end_layout
\begin_layout Subsection \begin_layout Subsection
@ -501,9 +516,14 @@ Cross-sections (single-particle)
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
Extinction, scattering and absorption cross sections of a single particle Assuming a non-lossy background medium, extinction, scattering and absorption
irradiated by a plane wave propagating in direction cross sections of a single scatterer irradiated by a plane wave propagating
in direction
\begin_inset Formula $\uvec k$ \begin_inset Formula $\uvec k$
\end_inset
and (complex) amplitude
\begin_inset Formula $\vect E_{0}$
\end_inset \end_inset
are are
@ -538,6 +558,7 @@ reference "eq:plane wave expansion"
\end_inset \end_inset
. .
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -746,12 +767,135 @@ noprefix "false"
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\ \sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\ & & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\ \sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}TODO,\label{eq:absorption CS multi} & & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.\label{eq:absorption CS multi}
\end{eqnarray} \end{eqnarray}
\end_inset \end_inset
An alternative approach to derive the absorption cross section is via a
power transport argument.
Note the direct proportionality between absorption cross section
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:absorption CS single"
plural "false"
caps "false"
noprefix "false"
\end_inset
and net radiated power for single scatterer
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Power transport"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
\end_inset
.
In the many-particle setup (with non-lossy background medium, so that only
the particles absorb), the total absorbed power is equal to the sum of
absorbed powers on each particle,
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
\end_inset
.
Using the power transport formula
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Power transport"
plural "false"
caps "false"
noprefix "false"
\end_inset
particle-wise gives
\begin_inset Formula
\begin{equation}
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
\end{equation}
\end_inset
which seems different from
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:absorption CS multi"
plural "false"
caps "false"
noprefix "false"
\end_inset
, but using
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:particle total incident field coefficient a"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we can rewrite it as
\begin_inset Formula
\begin{align*}
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
\end{align*}
\end_inset
It is easy to show that all the terms of
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
\end_inset
containing the singular spherical Bessel functions
\begin_inset Formula $y_{l}$
\end_inset
are imaginary,
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO better formulation
\end_layout
\end_inset
so that actually
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
\end_inset
proving that the expressions in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:absorption CS multi"
plural "false"
caps "false"
noprefix "false"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:absorption CS multi alternative"
plural "false"
caps "false"
noprefix "false"
\end_inset
are equal.
\end_layout \end_layout
\end_body \end_body