Finite system cross sections done
Former-commit-id: bf5afd2dfbcadf4aede6550ffd5e0fc5d030e3e1
This commit is contained in:
parent
81fdc50dc0
commit
a6e9cbc351
|
@ -469,6 +469,21 @@ with expansion coefficients
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Multiple-scattering problem
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -501,9 +516,14 @@ Cross-sections (single-particle)
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Extinction, scattering and absorption cross sections of a single particle
|
||||
irradiated by a plane wave propagating in direction
|
||||
Assuming a non-lossy background medium, extinction, scattering and absorption
|
||||
cross sections of a single scatterer irradiated by a plane wave propagating
|
||||
in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
and (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
|
@ -538,6 +558,7 @@ reference "eq:plane wave expansion"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -746,12 +767,135 @@ noprefix "false"
|
|||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}TODO,\label{eq:absorption CS multi}
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.\label{eq:absorption CS multi}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
An alternative approach to derive the absorption cross section is via a
|
||||
power transport argument.
|
||||
Note the direct proportionality between absorption cross section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:absorption CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and net radiated power for single scatterer
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Power transport"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In the many-particle setup (with non-lossy background medium, so that only
|
||||
the particles absorb), the total absorbed power is equal to the sum of
|
||||
absorbed powers on each particle,
|
||||
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Using the power transport formula
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Power transport"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
particle-wise gives
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
which seems different from
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:absorption CS multi"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, but using
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:particle total incident field coefficient a"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we can rewrite it as
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
||||
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
It is easy to show that all the terms of
|
||||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
|
||||
\end_inset
|
||||
|
||||
containing the singular spherical Bessel functions
|
||||
\begin_inset Formula $y_{l}$
|
||||
\end_inset
|
||||
|
||||
are imaginary,
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO better formulation
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
so that actually
|
||||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
|
||||
\end_inset
|
||||
|
||||
proving that the expressions in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:absorption CS multi"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:absorption CS multi alternative"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
are equal.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue