From a7c95d0ee0e53dc474bc08ccb8200d2cc92e2480 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Mon, 4 May 2020 15:26:26 +0300 Subject: [PATCH] Sliced array driving in finiterectlat-constant-driving.py Former-commit-id: 72b9caa2a3396606b2aaff8ffcd578702926d10d --- misc/finiterectlat-constant-driving.py | 265 +++++++++++++++---------- 1 file changed, 155 insertions(+), 110 deletions(-) diff --git a/misc/finiterectlat-constant-driving.py b/misc/finiterectlat-constant-driving.py index ee15688..3d6ee5e 100755 --- a/misc/finiterectlat-constant-driving.py +++ b/misc/finiterectlat-constant-driving.py @@ -1,7 +1,7 @@ #!/usr/bin/env python3 import math -from qpms.argproc import ArgParser +from qpms.argproc import ArgParser, make_dict_action, sslice figscale=3 ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega']) @@ -15,6 +15,13 @@ ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-a ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample') ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth') ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution') +ap.add_argument("--xslice", default={None:None}, nargs=2, + action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True), + ) +ap.add_argument("--yslice", default={None:None}, nargs=2, + action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True), + ) + #ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition") @@ -29,8 +36,8 @@ px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) -defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d_micro-%s" % ( - particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted) +defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%s_k_%g_%g_f%geV_L%d_micro-%s" % ( + particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted) logging.info("Default file prefix: %s" % defaultprefix) import numpy as np @@ -44,6 +51,21 @@ from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar +# Check slice ranges and generate all corresponding combinations +slicepairs = [] +slicelabels = set(a.xslice.keys()) | set(a.yslice.keys()) +for label in slicelabels: + rowslices = a.xslice.get(label, None) + colslices = a.yslice.get(label, None) + # TODO check validity of the slices. + if rowslices is None: + rowslices = [slice(None, None, None)] + if colslices is None: + colslices = [slice(None, None, None)] + for rs in rowslices: + for cs in colslices: + slicepairs.append((rs, cs)) + def realdipfieldlabels(yp): if yp == 0: return 'x' if yp == 1: return 'y' @@ -113,6 +135,27 @@ ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omeg wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber +# Mapping between ss particles and grid positions +positions = ss.positions +xpositions = np.unique(positions[:,0]) +assert(len(xpositions) == Nx) +ypositions = np.unique(positions[:,1]) +assert(len(ypositions == Ny)) +# particle positions as integer indices +posmap = np.empty((positions.shape[0],2), dtype=int) +invposmap = np.empty((Nx, Ny), dtype=int) +for i, pos in enumerate(positions): + posmap[i,0] = np.searchsorted(xpositions, positions[i,0]) + posmap[i,1] = np.searchsorted(ypositions, positions[i,1]) + invposmap[posmap[i,0], posmap[i, 1]] = i + +def fullvec2grid(fullvec, swapxy=False): + arr = np.empty((Nx,Ny,nelem), dtype=complex) + for pi, offset in enumerate(ss.fullvec_poffsets): + ix, iy = posmap[pi] + arr[ix, iy] = fullvec[offset:offset+nelem] + return np.swapaxes(arr, 0, 1) if swapxy else arr + outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" @@ -140,10 +183,20 @@ else: driving_full[y,y::nelem] = phases -scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex) +# Apply the driving on the specified slices only +nsp = len(slicepairs) +driving_full_sliced = np.zeros((nsp,) + driving_full.shape, dtype=complex) +p1range = np.arange(nelem) +for spi in range(nsp): + xs, ys = slicepairs[spi] + driven_pi = invposmap[xs, ys].flatten() + driven_y = ((driven_pi * nelem)[:,None] + p1range[None,:]).flatten() + driving_full_sliced[spi][:, driven_y] = driving_full[:, driven_y] + +scattered_full = np.zeros((nsp, nelem, ss.fecv_size),dtype=complex) scattered_ir = [None for iri in range(ss.nirreps)] -ir_contained = np.ones((nelem, ss.nirreps), dtype=bool) +ir_contained = np.ones((nsp, nelem, ss.nirreps), dtype=bool) for iri in range(ss.nirreps): logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) @@ -154,21 +207,22 @@ for iri in range(ss.nirreps): #translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) #logging.info("auxillary translation matrix created") - scattered_ir[iri] = np.zeros((nelem, ss.saecv_sizes[iri]), dtype=complex) - scattered_ir_unpacked = np.zeros((nelem, ss.fecv_size), dtype=complex) + scattered_ir[iri] = np.zeros((nsp, nelem, ss.saecv_sizes[iri]), dtype=complex) + scattered_ir_unpacked = np.zeros((nsp, nelem, ss.fecv_size), dtype=complex) - for y in range(nelem): - ã = driving_full[y] - ãi = cleanarray(ss.pack_vector(ã, iri), copy=False) - if np.all(ãi == 0): - ir_contained[y, iri] = False - continue - Tã = ssw.apply_Tmatrices_full(ã) - Tãi = ss.pack_vector(Tã, iri) - fi = LU(Tãi) - scattered_ir[iri][y] = fi - scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri) - scattered_full[y] += scattered_ir_unpacked[y] + for spi in range(nsp): + for y in range(nelem): + ã = driving_full_sliced[spi,y] + ãi = cleanarray(ss.pack_vector(ã, iri), copy=False) + if np.all(ãi == 0): + ir_contained[spi, y, iri] = False + continue + Tã = ssw.apply_Tmatrices_full(ã) + Tãi = ss.pack_vector(Tã, iri) + fi = LU(Tãi) + scattered_ir[iri][spi, y] = fi + scattered_ir_unpacked[spi, y] = ss.unpack_vector(fi, iri) + scattered_full[spi, y] += scattered_ir_unpacked[spi, y] if a.save_gradually: iriout = outfile_tmp + ".%d" % iri np.savez(iriout, iri=iri, meta=vars(a), @@ -188,9 +242,10 @@ if not math.isnan(a.ccd_distance): ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij') ccd_points = np.swapaxes(np.stack(ccd_grid, axis=-1).squeeze(axis=-2), 0,1) # First axis is y, second is x, because of imshow... - ccd_fields = np.empty((nelem,) + ccd_points.shape, dtype=complex) - for y in range(nelem): - ccd_fields[y] = ssw.scattered_E(scattered_full[y], ccd_points, btyp=BesselType.HANKEL_PLUS) + ccd_fields = np.empty((nsp, nelem,) + ccd_points.shape, dtype=complex) + for spi in range(nsp): + for y in range(nelem): + ccd_fields[spi, y] = ssw.scattered_E(scattered_full[spi, y], ccd_points, btyp=BesselType.HANKEL_PLUS) logging.info("Far fields done") outfile = defaultprefix + ".npz" if a.output is None else a.output @@ -211,104 +266,94 @@ np.savez(outfile, meta=vars(a), logging.info("Saved to %s" % outfile) -if a.plot or (a.plot_out is not None): - positions = ss.positions - xpositions = np.unique(positions[:,0]) - assert(len(xpositions) == Nx) - ypositions = np.unique(positions[:,1]) - assert(len(ypositions == Ny)) - # particle positions as integer indices - posmap = np.empty((positions.shape[0],2), dtype=int) - for i, pos in enumerate(positions): - posmap[i,0] = np.searchsorted(xpositions, positions[i,0]) - posmap[i,1] = np.searchsorted(ypositions, positions[i,1]) +if a.plot or (a.plot_out is not None): - def fullvec2grid(fullvec, swapxy=False): - arr = np.empty((Nx,Ny,nelem), dtype=complex) - for pi, offset in enumerate(ss.fullvec_poffsets): - ix, iy = posmap[pi] - arr[ix, iy] = fullvec[offset:offset+nelem] - return np.swapaxes(arr, 0, 1) if swapxy else arr import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt, cm + from matplotlib.backends.backend_pdf import PdfPages t, l, m = bspec.tlm() phasecm = cm.twilight pmcm = cm.bwr abscm = cm.plasma - - fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 16, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 16), figscale*nelem)) - for yp in range(0,3): # TODO xy-dipoles instead? - axes[0,4*yp+0].set_title("abs / (E,1,%s)" % realdipfieldlabels(yp)) - axes[0,4*yp+1].set_title("arg / (E,1,%s)" % realdipfieldlabels(yp)) - axes[0,4*yp+2].set_title("Fabs / (E,1,%s)" % realdipfieldlabels(yp)) - axes[0,4*yp+3].set_title("Farg / (E,1,%s)" % realdipfieldlabels(yp)) - if not math.isnan(a.ccd_distance): - #axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) - #axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) - axes[0,12].set_title("$|E_{x}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) - axes[0,13].set_title("$|E_{y}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) - axes[0,14].set_title("$|E_x + E_y|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) - axes[0,15].set_title("$|E_{z}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) - for gg in range(12,16): - axes[-1,gg].set_xlabel("$x/\mathrm{m}$") - - - for y in range(nelem): - fulvec = scattered_full[y] - if a.symmetry_adapted is not None: - driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5] - driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' + -"(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in -driving_nonzero_y)) # TODO shorten the complex number precision - else: - driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],) - axes[y,0].set_ylabel(driving_descr) - axes[y,-1].yaxis.set_label_position("right") - axes[y,-1].set_ylabel("$y/\mathrm{m}$\n"+driving_descr) - vecgrid = fullvec2grid(fulvec, swapxy=True) - vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1)) - lemax = np.amax(abs(vecgrid)) - for yp in range(0,3): - if(np.amax(abs(realdipfields(vecgrid,yp))) > lemax*1e-5): - axes[y,yp*4].imshow(abs(realdipfields(vecgrid,yp)), vmin=0, interpolation='none') - axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(realdipfields(vecgrid,yp))), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes) - axes[y,yp*4+1].imshow(np.angle(realdipfields(vecgrid,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') - axes[y,yp*4+2].imshow(abs(realdipfields(vecgrid_ff,yp)), vmin=0, interpolation='none') - axes[y,yp*4+3].imshow(np.angle(realdipfields(vecgrid_ff,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') - else: - for c in range(0,4): - axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) - if not math.isnan(a.ccd_distance): - fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2) - e2vmax = np.amax(np.linalg.norm(ccd_fields[y], axis=-1)**2) - xint = abs(ccd_fields[y,...,0])**2 - yint = abs(ccd_fields[y,...,1])**2 - xyint = abs(ccd_fields[y,...,0] + ccd_fields[y,...,1])**2 - zint = abs(ccd_fields[y,...,2])**2 - xintmax = np.amax(xint) - yintmax = np.amax(yint) - zintmax = np.amax(zint) - xyintmax = np.amax(xyint) - axes[y, 12].imshow(xint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') - axes[y, 13].imshow(yint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') - axes[y, 14].imshow(xyint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') - axes[y, 15].imshow(zint, origin='lower', extent=fxye, cmap=abscm, interpolation='none') - axes[y, 12].text(0.5, 0.5, '%g\n%g' % (xintmax,xintmax/e2vmax), - horizontalalignment='center', verticalalignment='center', transform=axes[y,12].transAxes) - axes[y, 13].text(0.5, 0.5, '%g\n%g' % (yintmax,yintmax/e2vmax), - horizontalalignment='center', verticalalignment='center', transform=axes[y,13].transAxes) - axes[y, 14].text(0.5, 0.5, '%g\n%g' % (xyintmax,xyintmax/e2vmax), - horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) - axes[y, 15].text(0.5, 0.5, '%g\n%g' % (zintmax,zintmax/e2vmax), - horizontalalignment='center', verticalalignment='center', transform=axes[y,15].transAxes) - for gg in range(12,16): - axes[y,gg].yaxis.tick_right() - for gg in range(12,15): - axes[y,gg].yaxis.set_major_formatter(plt.NullFormatter()) + plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out - fig.savefig(plotfile) + pp = PdfPages(plotfile) + + for spi in range(nsp): + fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 16, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 16), figscale*nelem)) + for yp in range(0,3): # TODO xy-dipoles instead? + axes[0,4*yp+0].set_title("abs / (E,1,%s)" % realdipfieldlabels(yp)) + axes[0,4*yp+1].set_title("arg / (E,1,%s)" % realdipfieldlabels(yp)) + axes[0,4*yp+2].set_title("Fabs / (E,1,%s)" % realdipfieldlabels(yp)) + axes[0,4*yp+3].set_title("Farg / (E,1,%s)" % realdipfieldlabels(yp)) + if not math.isnan(a.ccd_distance): + #axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) + #axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) + axes[0,12].set_title("$|E_{x}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + axes[0,13].set_title("$|E_{y}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + axes[0,14].set_title("$|E_x + E_y|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + axes[0,15].set_title("$|E_{z}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance) + for gg in range(12,16): + axes[-1,gg].set_xlabel("$x/\mathrm{m}$") + + + for y in range(nelem): + fulvec = scattered_full[spi,y] + if a.symmetry_adapted is not None: + driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5] + driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' + + "(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in + driving_nonzero_y)) # TODO shorten the complex number precision + else: + driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],) + axes[y,0].set_ylabel(driving_descr) + axes[y,-1].yaxis.set_label_position("right") + axes[y,-1].set_ylabel("$y/\mathrm{m}$\n"+driving_descr) + vecgrid = fullvec2grid(fulvec, swapxy=True) + vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1)) + lemax = np.amax(abs(vecgrid)) + for yp in range(0,3): + if(np.amax(abs(realdipfields(vecgrid,yp))) > lemax*1e-5): + axes[y,yp*4].imshow(abs(realdipfields(vecgrid,yp)), vmin=0, interpolation='none') + axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(realdipfields(vecgrid,yp))), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes) + axes[y,yp*4+1].imshow(np.angle(realdipfields(vecgrid,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') + axes[y,yp*4+2].imshow(abs(realdipfields(vecgrid_ff,yp)), vmin=0, interpolation='none') + axes[y,yp*4+3].imshow(np.angle(realdipfields(vecgrid_ff,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none') + else: + for c in range(0,4): + axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) + if not math.isnan(a.ccd_distance): + fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2) + e2vmax = np.amax(np.linalg.norm(ccd_fields[spi,y], axis=-1)**2) + xint = abs(ccd_fields[spi,y,...,0])**2 + yint = abs(ccd_fields[spi,y,...,1])**2 + xyint = abs(ccd_fields[spi,y,...,0] + ccd_fields[spi,y,...,1])**2 + zint = abs(ccd_fields[spi,y,...,2])**2 + xintmax = np.amax(xint) + yintmax = np.amax(yint) + zintmax = np.amax(zint) + xyintmax = np.amax(xyint) + axes[y, 12].imshow(xint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') + axes[y, 13].imshow(yint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') + axes[y, 14].imshow(xyint, origin="lower", extent=fxye, cmap=abscm, interpolation='none') + axes[y, 15].imshow(zint, origin='lower', extent=fxye, cmap=abscm, interpolation='none') + axes[y, 12].text(0.5, 0.5, '%g\n%g' % (xintmax,xintmax/e2vmax), + horizontalalignment='center', verticalalignment='center', transform=axes[y,12].transAxes) + axes[y, 13].text(0.5, 0.5, '%g\n%g' % (yintmax,yintmax/e2vmax), + horizontalalignment='center', verticalalignment='center', transform=axes[y,13].transAxes) + axes[y, 14].text(0.5, 0.5, '%g\n%g' % (xyintmax,xyintmax/e2vmax), + horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) + axes[y, 15].text(0.5, 0.5, '%g\n%g' % (zintmax,zintmax/e2vmax), + horizontalalignment='center', verticalalignment='center', transform=axes[y,15].transAxes) + for gg in range(12,16): + axes[y,gg].yaxis.tick_right() + for gg in range(12,15): + axes[y,gg].yaxis.set_major_formatter(plt.NullFormatter()) + fig.text(0, 0, str(slicepairs[spi]), horizontalalignment='left', verticalalignment='bottom') + pp.savefig() + pp.close() exit(0)