Make infinite rect lat. / real freq. SVD work with ScatteringSystem.
Former-commit-id: 56beaeca0b44ca9087208c5e27c007d492572302
This commit is contained in:
parent
8b7e2c6332
commit
a88694e7ef
|
@ -8,6 +8,7 @@ ap.add_argument("-o", "--output", type=str, required=False, help='output path (i
|
||||||
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
|
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
|
||||||
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
|
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
|
||||||
ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot")
|
ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot")
|
||||||
|
ap.add_argument("--D2", action='store_true', help="Use D2h symmetry even if the x and y periods are equal")
|
||||||
|
|
||||||
a=ap.parse_args()
|
a=ap.parse_args()
|
||||||
|
|
||||||
|
@ -17,7 +18,7 @@ logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
|
||||||
px, py = a.period
|
px, py = a.period
|
||||||
|
|
||||||
#Important! The particles are supposed to be of D2h/D4h symmetry
|
#Important! The particles are supposed to be of D2h/D4h symmetry
|
||||||
thegroup = 'D4h' if px == py else 'D2h'
|
thegroup = 'D4h' if px == py and not a.D2 else 'D2h'
|
||||||
|
|
||||||
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
||||||
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
||||||
|
@ -28,14 +29,14 @@ logging.info("Default file prefix: %s" % defaultprefix)
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import qpms
|
import qpms
|
||||||
|
import warnings
|
||||||
from qpms.cybspec import BaseSpec
|
from qpms.cybspec import BaseSpec
|
||||||
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
|
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
|
||||||
from qpms.qpms_c import Particle, pgsl_ignore_error
|
from qpms.qpms_c import Particle, pgsl_ignore_error
|
||||||
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
|
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
|
||||||
from qpms.cycommon import DebugFlags, dbgmsg_enable
|
from qpms.cycommon import DebugFlags, dbgmsg_enable
|
||||||
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
|
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
|
||||||
from qpms.cyunitcell import unitcell
|
from qpms.symmetries import point_group_info
|
||||||
#from qpms.symmetries import point_group_info # TODO
|
|
||||||
eh = eV/hbar
|
eh = eV/hbar
|
||||||
|
|
||||||
# not used; TODO:
|
# not used; TODO:
|
||||||
|
@ -46,7 +47,9 @@ irrep_labels = {"B2''":"$B_2''$",
|
||||||
"A2''":"$A_2''$",
|
"A2''":"$A_2''$",
|
||||||
"B1''":"$B_1''$",
|
"B1''":"$B_1''$",
|
||||||
"A2'":"$A_2'$",
|
"A2'":"$A_2'$",
|
||||||
"B1'":"$B_1'$"}
|
"B1'":"$B_1'$",
|
||||||
|
"E'":"$E'$",
|
||||||
|
"E''":"$E''$",}
|
||||||
|
|
||||||
dbgmsg_enable(DebugFlags.INTEGRATION)
|
dbgmsg_enable(DebugFlags.INTEGRATION)
|
||||||
|
|
||||||
|
@ -65,23 +68,30 @@ logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, ome
|
||||||
bspec = BaseSpec(lMax = a.lMax)
|
bspec = BaseSpec(lMax = a.lMax)
|
||||||
nelem = len(bspec)
|
nelem = len(bspec)
|
||||||
# The parameters here should probably be changed (needs a better qpms_c.Particle implementation)
|
# The parameters here should probably be changed (needs a better qpms_c.Particle implementation)
|
||||||
pp = Particle(orig_xy[0][0], tmgen=ap.tmgen, bspec=bspec)
|
pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec)
|
||||||
par = [pp]
|
|
||||||
|
|
||||||
u = unitcell(a1, a2, par, refractive_index=a.refractive_index)
|
ss, ssw = ScatteringSystem.create([pp], ap.background_emg, omegas[0], latticebasis=ap.direct_basis)
|
||||||
eta = (np.pi / u.Area)**.5
|
k = np.array([0.,0.,0])
|
||||||
|
# Auxillary finite scattering system for irrep decomposition, quite a hack
|
||||||
|
ss1, ssw1 = ScatteringSystem.create([pp], ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[thegroup]))
|
||||||
|
|
||||||
wavenumbers = np.empty(omegas.shape)
|
wavenumbers = np.empty(omegas.shape)
|
||||||
SVs = np.empty(omegas.shape+(nelem,))
|
SVs = [None] * ss1.nirreps
|
||||||
beta = np.array([0.,0.])
|
for iri in range(ss1.nirreps):
|
||||||
|
SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],))
|
||||||
for i, omega in enumerate(omegas):
|
for i, omega in enumerate(omegas):
|
||||||
wavenumbers[i] = ap.background_epsmu.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
|
ssw = ss(omega)
|
||||||
|
wavenumbers[i] = ssw.wavenumber.real
|
||||||
|
if ssw.wavenumber.imag:
|
||||||
|
warnings.warn("Non-zero imaginary wavenumber encountered")
|
||||||
with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed
|
with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed
|
||||||
ImTW = u.evaluate_ImTW(eta, omega, beta)
|
ImTW = ssw.modeproblem_matrix_full(k)
|
||||||
SVs[i] = np.linalg.svd(ImTW, compute_uv = False)
|
for iri in range(ss1.nirreps):
|
||||||
|
ImTW_packed = ss1.pack_matrix(ImTW, iri)
|
||||||
|
SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False)
|
||||||
|
|
||||||
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
||||||
np.savez(outfile, meta=vars(a), omegas=omegas, wavenumbers=wavenumbers, SVs=SVs, unitcell_area=u.Area
|
np.savez(outfile, meta=vars(a), omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume
|
||||||
)
|
)
|
||||||
logging.info("Saved to %s" % outfile)
|
logging.info("Saved to %s" % outfile)
|
||||||
|
|
||||||
|
@ -93,10 +103,18 @@ if a.plot or (a.plot_out is not None):
|
||||||
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
for i in range(a.singular_values):
|
cc = plt.rcParams['axes.prop_cycle']()
|
||||||
ax.plot(omegas/eh, SVs[:,-1-i])
|
for iri in range(ss1.nirreps):
|
||||||
|
cargs = next(cc)
|
||||||
|
nlines = min(a.singular_values, ss1.saecv_sizes[iri])
|
||||||
|
for i in range(nlines):
|
||||||
|
ax.plot(omegas/eh, SVs[iri][:,-1-i],
|
||||||
|
label= None if i else irrep_labels[ss1.irrep_names[iri]],
|
||||||
|
**cargs)
|
||||||
|
ax.set_ylim([0,1.1])
|
||||||
ax.set_xlabel('$\hbar \omega / \mathrm{eV}$')
|
ax.set_xlabel('$\hbar \omega / \mathrm{eV}$')
|
||||||
ax.set_ylabel('Singular values')
|
ax.set_ylabel('Singular values')
|
||||||
|
ax.legend()
|
||||||
|
|
||||||
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
||||||
fig.savefig(plotfile)
|
fig.savefig(plotfile)
|
||||||
|
|
|
@ -26,7 +26,8 @@ class ArgParser:
|
||||||
'rectlattice2d_periods': lambda ap: ap.add_argument("-p", "--period", type=float, nargs='+', required=True, help='square/rectangular lattice periods', metavar=('px','[py]')),
|
'rectlattice2d_periods': lambda ap: ap.add_argument("-p", "--period", type=float, nargs='+', required=True, help='square/rectangular lattice periods', metavar=('px','[py]')),
|
||||||
'rectlattice2d_counts': lambda ap: ap.add_argument("--size", type=int, nargs=2, required=True, help='rectangular array size (particle column, row count)', metavar=('NCOLS', 'NROWS')),
|
'rectlattice2d_counts': lambda ap: ap.add_argument("--size", type=int, nargs=2, required=True, help='rectangular array size (particle column, row count)', metavar=('NCOLS', 'NROWS')),
|
||||||
'single_frequency_eV': lambda ap: ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV'),
|
'single_frequency_eV': lambda ap: ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV'),
|
||||||
'seq_frequency_eV': lambda ap: ap.add_argument("-f", "--eV-seq", type=float, nargs=3, required=True, help='uniform radiation angular frequency sequence in eV', metavar=('FIRST', 'INCREMENT', 'LAST')),
|
'multiple_frequency_eV_optional': lambda ap: ap.add_argument("-f", "--eV", type=float, nargs='*', help='radiation angular frequency in eV (additional)'),
|
||||||
|
'seq_frequency_eV': lambda ap: ap.add_argument("-F", "--eV-seq", type=float, nargs=3, required=True, help='uniform radiation angular frequency sequence in eV', metavar=('FIRST', 'INCREMENT', 'LAST')),
|
||||||
'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', default='Au', required=True),
|
'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', default='Au', required=True),
|
||||||
'single_radius': lambda ap: ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)'),
|
'single_radius': lambda ap: ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)'),
|
||||||
'single_height': lambda ap: ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical'),
|
'single_height': lambda ap: ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical'),
|
||||||
|
@ -46,7 +47,7 @@ class ArgParser:
|
||||||
'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',)),
|
'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',)),
|
||||||
'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), ()),
|
'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), ()),
|
||||||
'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',)),
|
'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',)),
|
||||||
'omega_seq': ("Equidistant real frequency range", (), ('seq_frequency_eV',), ('_eval_omega_seq',)),
|
'omega_seq': ("Equidistant real frequency range with possibility of adding individual frequencies", (), ('seq_frequency_eV', 'multiple_frequency_eV_optional',), ('_eval_omega_seq',)),
|
||||||
'lattice2d': ("Specification of a generic 2d lattice (spanned by the x,y axes)", (), ('lattice2d_basis',), ('_eval_lattice2d',)),
|
'lattice2d': ("Specification of a generic 2d lattice (spanned by the x,y axes)", (), ('lattice2d_basis',), ('_eval_lattice2d',)),
|
||||||
'rectlattice2d': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", (), ('rectlattice2d_periods',), ('_eval_rectlattice2d',)),
|
'rectlattice2d': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", (), ('rectlattice2d_periods',), ('_eval_rectlattice2d',)),
|
||||||
'rectlattice2d_finite': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", ('rectlattice2d',), ('rectlattice2d_counts',), ()),
|
'rectlattice2d_finite': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", ('rectlattice2d',), ('rectlattice2d_counts',), ()),
|
||||||
|
@ -126,6 +127,9 @@ class ArgParser:
|
||||||
from .constants import eV, hbar
|
from .constants import eV, hbar
|
||||||
start, step, stop = self.args.eV_seq
|
start, step, stop = self.args.eV_seq
|
||||||
self.omegas = np.arange(start, stop, step)
|
self.omegas = np.arange(start, stop, step)
|
||||||
|
if self.args.eV:
|
||||||
|
self.omegas = np.concatenate((self.omegas, np.array(self.args.eV)))
|
||||||
|
self.omegas.sort()
|
||||||
self.omegas *= eV/hbar
|
self.omegas *= eV/hbar
|
||||||
|
|
||||||
def _eval_lattice2d(self): # feature: lattice2d
|
def _eval_lattice2d(self): # feature: lattice2d
|
||||||
|
|
|
@ -48,42 +48,27 @@ static inline complex double spherical_yn(qpms_l_t l, complex double z) {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Don't use Stead algorithm from GSL above this threshold (it fails for x's around 1000000 and higher)
|
|
||||||
static const double stead_threshold = 1000;
|
|
||||||
|
|
||||||
// There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
|
// There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
|
||||||
qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
|
qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
|
||||||
int retval;
|
int retval;
|
||||||
double tmparr[lmax+1];
|
double tmparr[lmax+1];
|
||||||
switch(typ) {
|
switch(typ) {
|
||||||
case QPMS_BESSEL_REGULAR:
|
case QPMS_BESSEL_REGULAR:
|
||||||
retval = (x < stead_threshold) ? gsl_sf_bessel_jl_steed_array(lmax, x, tmparr)
|
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
||||||
: gsl_sf_bessel_jl_array(lmax, x, tmparr);
|
|
||||||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||||||
return retval;
|
return retval;
|
||||||
break;
|
break;
|
||||||
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
|
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
|
||||||
if(QPMS_UNLIKELY(x == 0)) {
|
|
||||||
for (int l = 0; l <= lmax; ++l)
|
|
||||||
result_array[l] = NAN;
|
|
||||||
return QPMS_ESING; // GSL would have returned GSL_EDOM without setting NANs.
|
|
||||||
}
|
|
||||||
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
|
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
|
||||||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||||||
return retval;
|
return retval;
|
||||||
break;
|
break;
|
||||||
case QPMS_HANKEL_PLUS:
|
case QPMS_HANKEL_PLUS:
|
||||||
case QPMS_HANKEL_MINUS:
|
case QPMS_HANKEL_MINUS:
|
||||||
retval = (x < stead_threshold) ? gsl_sf_bessel_jl_steed_array(lmax, x, tmparr)
|
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
||||||
: gsl_sf_bessel_jl_array(lmax, x, tmparr);
|
|
||||||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||||||
if(retval) return retval;
|
if(retval) return retval;
|
||||||
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
|
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
|
||||||
if(QPMS_UNLIKELY(x == 0)) {
|
|
||||||
for (int l = 0; l <= lmax; ++l)
|
|
||||||
result_array[l] += I * NAN;
|
|
||||||
return QPMS_ESING; // GSL would have returned GSL_EDOM without setting NANs.
|
|
||||||
}
|
|
||||||
if (typ==QPMS_HANKEL_PLUS)
|
if (typ==QPMS_HANKEL_PLUS)
|
||||||
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
|
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
|
||||||
else
|
else
|
||||||
|
@ -91,9 +76,10 @@ qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double
|
||||||
return retval;
|
return retval;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
QPMS_INVALID_ENUM(typ);
|
abort();
|
||||||
|
//return GSL_EDOM;
|
||||||
}
|
}
|
||||||
QPMS_WTF;
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO DOC
|
// TODO DOC
|
||||||
|
@ -106,6 +92,8 @@ qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex doub
|
||||||
else if (fpclassify(creal(x)) == FP_INFINITE)
|
else if (fpclassify(creal(x)) == FP_INFINITE)
|
||||||
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
|
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
|
||||||
else {
|
else {
|
||||||
|
try_again: ;
|
||||||
|
int retry_counter = 0;
|
||||||
const DOUBLE_PRECISION_t zr = creal(x), zi = cimag(x), fnu = 0.5;
|
const DOUBLE_PRECISION_t zr = creal(x), zi = cimag(x), fnu = 0.5;
|
||||||
const INTEGER_t n = lmax + 1, kode = 1 /* No exponential scaling */;
|
const INTEGER_t n = lmax + 1, kode = 1 /* No exponential scaling */;
|
||||||
DOUBLE_PRECISION_t cyr[n], cyi[n];
|
DOUBLE_PRECISION_t cyr[n], cyi[n];
|
||||||
|
@ -133,7 +121,7 @@ qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex doub
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
QPMS_INVALID_ENUM(typ);
|
QPMS_WTF;
|
||||||
}
|
}
|
||||||
// TODO check for underflows? (nz != 0)
|
// TODO check for underflows? (nz != 0)
|
||||||
if (ierr == 0 || ierr == 3) {
|
if (ierr == 0 || ierr == 3) {
|
||||||
|
@ -145,9 +133,15 @@ qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex doub
|
||||||
kindchar);
|
kindchar);
|
||||||
return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
|
return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
|
||||||
}
|
}
|
||||||
else
|
else {
|
||||||
QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d.",
|
if (retry_counter < 5) {
|
||||||
kindchar, (int) ierr);
|
QPMS_WARN("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi). Retrying.\n",
|
||||||
|
kindchar, (int) ierr, lmax, creal(x), cimag(x));
|
||||||
|
++retry_counter;
|
||||||
|
goto try_again;
|
||||||
|
} else QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi).",
|
||||||
|
kindchar, (int) ierr, lmax, creal(x), cimag(x));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return QPMS_SUCCESS;
|
return QPMS_SUCCESS;
|
||||||
}
|
}
|
||||||
|
@ -165,8 +159,10 @@ static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calc
|
||||||
if (lMax <= c->lMax)
|
if (lMax <= c->lMax)
|
||||||
return QPMS_SUCCESS;
|
return QPMS_SUCCESS;
|
||||||
else {
|
else {
|
||||||
QPMS_CRASHING_REALLOC(c->akn, sizeof(double) * akn_index(lMax + 2, 0));
|
if ( NULL == (c->akn = realloc(c->akn, sizeof(double) * akn_index(lMax + 2, 0))))
|
||||||
// QPMS_CRASHING_REALLOC(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0));
|
abort();
|
||||||
|
//if ( NULL == (c->bkn = realloc(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0))))
|
||||||
|
// abort();
|
||||||
for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
|
for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
|
||||||
for(qpms_l_t k = 0; k <= n; ++k)
|
for(qpms_l_t k = 0; k <= n; ++k)
|
||||||
c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
|
c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
|
||||||
|
@ -177,7 +173,8 @@ static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calc
|
||||||
}
|
}
|
||||||
|
|
||||||
complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, complex double x) {
|
complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, complex double x) {
|
||||||
QPMS_ENSURE_SUCCESS(qpms_sbessel_calculator_ensure_lMax(c, n));
|
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, n))
|
||||||
|
abort();
|
||||||
complex double z = I/x;
|
complex double z = I/x;
|
||||||
complex double result = 0;
|
complex double result = 0;
|
||||||
for (qpms_l_t k = n; k >= 0; --k)
|
for (qpms_l_t k = n; k >= 0; --k)
|
||||||
|
@ -190,7 +187,8 @@ complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, co
|
||||||
|
|
||||||
qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
|
qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
|
||||||
const qpms_l_t lMax, const complex double x, complex double * const target) {
|
const qpms_l_t lMax, const complex double x, complex double * const target) {
|
||||||
QPMS_ENSURE_SUCCESS(qpms_sbessel_calculator_ensure_lMax(c, lMax));
|
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, lMax))
|
||||||
|
abort();
|
||||||
memset(target, 0, sizeof(complex double) * lMax);
|
memset(target, 0, sizeof(complex double) * lMax);
|
||||||
complex double kahancomp[lMax];
|
complex double kahancomp[lMax];
|
||||||
memset(kahancomp, 0, sizeof(complex double) * lMax);
|
memset(kahancomp, 0, sizeof(complex double) * lMax);
|
||||||
|
|
|
@ -821,12 +821,16 @@ cdef class _ScatteringSystemAtOmega:
|
||||||
else:
|
else:
|
||||||
if iri is not None:
|
if iri is not None:
|
||||||
raise NotImplementedError("Irrep decomposition not (yet) supported for periodic systems")
|
raise NotImplementedError("Irrep decomposition not (yet) supported for periodic systems")
|
||||||
sswk = _ScatteringSystemAtOmegaK()
|
sswk = self._sswk(k)
|
||||||
|
return ScatteringMatrix(ssw=self, sswk=sswk, iri=None)
|
||||||
|
|
||||||
|
def _sswk(self, k):
|
||||||
|
cdef _ScatteringSystemAtOmegaK sswk = _ScatteringSystemAtOmegaK()
|
||||||
sswk.sswk.ssw = self.ssw
|
sswk.sswk.ssw = self.ssw
|
||||||
sswk.sswk.k[0] = k[0]
|
sswk.sswk.k[0] = k[0]
|
||||||
sswk.sswk.k[1] = k[1]
|
sswk.sswk.k[1] = k[1]
|
||||||
sswk.sswk.k[2] = k[2]
|
sswk.sswk.k[2] = k[2]
|
||||||
return ScatteringMatrix(ssw=self, sswk=sswk, iri=None)
|
return sswk
|
||||||
|
|
||||||
property fecv_size:
|
property fecv_size:
|
||||||
def __get__(self): return self.ss_pyref.fecv_size
|
def __get__(self): return self.ss_pyref.fecv_size
|
||||||
|
@ -846,6 +850,11 @@ cdef class _ScatteringSystemAtOmega:
|
||||||
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
||||||
(flen,flen),dtype=complex, order='C')
|
(flen,flen),dtype=complex, order='C')
|
||||||
cdef cdouble[:,::1] target_view = target
|
cdef cdouble[:,::1] target_view = target
|
||||||
|
cdef _ScatteringSystemAtOmegaK sswk
|
||||||
|
if k is not None:
|
||||||
|
sswk = self._sswk(k)
|
||||||
|
qpms_scatsyswk_build_modeproblem_matrix_full(&target_view[0][0], &sswk.sswk)
|
||||||
|
else:
|
||||||
qpms_scatsysw_build_modeproblem_matrix_full(&target_view[0][0], self.ssw)
|
qpms_scatsysw_build_modeproblem_matrix_full(&target_view[0][0], self.ssw)
|
||||||
return target
|
return target
|
||||||
|
|
||||||
|
|
|
@ -618,7 +618,7 @@ cdef extern from "scatsystem.h":
|
||||||
struct qpms_scatsys_at_omega_k_t:
|
struct qpms_scatsys_at_omega_k_t:
|
||||||
const qpms_scatsys_at_omega_t *ssw
|
const qpms_scatsys_at_omega_t *ssw
|
||||||
double k[3]
|
double k[3]
|
||||||
cdouble *qpms_scatsyswk_build_modeproblem_motrix_full(cdouble *target, const qpms_scatsys_at_omega_k_t *sswk)
|
cdouble *qpms_scatsyswk_build_modeproblem_matrix_full(cdouble *target, const qpms_scatsys_at_omega_k_t *sswk)
|
||||||
cdouble *qpms_scatsys_periodic_build_translation_matrix_full(cdouble *target, const qpms_scatsys_t *ss, cdouble wavenumber, const cart3_t *wavevector)
|
cdouble *qpms_scatsys_periodic_build_translation_matrix_full(cdouble *target, const qpms_scatsys_t *ss, cdouble wavenumber, const cart3_t *wavevector)
|
||||||
qpms_ss_LU qpms_scatsyswk_build_modeproblem_matrix_full_LU(cdouble *target, int *target_piv, const qpms_scatsys_at_omega_k_t *sswk)
|
qpms_ss_LU qpms_scatsyswk_build_modeproblem_matrix_full_LU(cdouble *target, int *target_piv, const qpms_scatsys_at_omega_k_t *sswk)
|
||||||
beyn_result_t *qpms_scatsys_periodic_find_eigenmodes(const qpms_scatsys_t *ss, const double *k,
|
beyn_result_t *qpms_scatsys_periodic_find_eigenmodes(const qpms_scatsys_t *ss, const double *k,
|
||||||
|
|
Loading…
Reference in New Issue