More to the convention table
Former-commit-id: 99183d88217d643ccce1a3d7e5b00ea4935c144e
This commit is contained in:
parent
5ad5b2ccd6
commit
a97612bf3d
|
@ -2,24 +2,31 @@ VSWF conventions
|
|||
================
|
||||
|
||||
|
||||
| Source | VSWF definition | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|
||||
|--- |--- |--- |--- |--- |--- |--- |
|
||||
| Kristensson I \cite kristensson_spherical_2014 | \f[ \wfkcreg, \wfkcout= \dots \f] | | Yes, in the spherical harmonics definition, cf. sect. D.2. | \f[
|
||||
| Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|
||||
|--- |--- |--- |--- |--- |--- |--- |--- |
|
||||
| Kristensson I \cite kristensson_spherical_2014 | \f[ \wfkcreg, \wfkcout= \dots \f] | \f[
|
||||
\wfkcreg_{1lm} = \frac{1}{k}\nabla\times\wfkcreg_{2lm}, \\
|
||||
\wfkcreg_{2lm} = \frac{1}{k}\nabla\times\wfkcreg_{1lm},
|
||||
\f] and analogously for outgoing waves \f$ \wfkcout \f$, eq. (2.8) onwards. | | Yes, in the spherical harmonics definition, cf. sect. D.2. | \f[
|
||||
\vect E = k \sqrt{\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
|
||||
\\
|
||||
\vect H = \frac{k \sqrt{\eta_0\eta}}{i\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
|
||||
\f] but for plane wave expansion \cite kristensson_spherical_2014 sect. 2.5 K. uses a different definition (same as in Kristensson II). | \f[
|
||||
P = \frac{1}{2} \sum_n \left( \abs{\wckcout_n}^2 +\Re \left(\wckcout_n\wckcreg_n^{*}\right)\right)
|
||||
\f] | The \f$ \wckcreg, \wckcout \f$ coefficients have dimension \f$ \sqrt{\mathrm{W}} \f$. |
|
||||
| Kristensson II \cite kristensson_scattering_2016 | \f[ \wfkrreg, \wfkrout= \dots \f] | | | \f[
|
||||
| Kristensson II \cite kristensson_scattering_2016 | \f[ \wfkrreg, \wfkrout= \dots \f] | \f[
|
||||
\nabla\times\wfkrreg_{\tau n} = k\wfkrreg_{\overline{\tau} n},
|
||||
\f] eq. (7.7) and analogously for outgoing waves \f$ \wfkrout \f$. | | | \f[
|
||||
\vect E = \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right),
|
||||
\\
|
||||
\vect H = \frac{1}{i\eta_0\eta} \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right)
|
||||
\f] | \f[
|
||||
P = \frac{1}{2k^2\eta_0\eta} \sum_n \left( \abs{\wckrout_n}^2 +\Re \left(\wckrout_n\wckrreg_n^{*}\right)\right)
|
||||
\f] | The \f$ \wckrreg, \wckrout \f$ coefficients have dimension \f$ \mathrm{V/m} \f$. |
|
||||
| Reid \cite reid_electromagnetism_2016 | | | | \f[
|
||||
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha wfrout_\alpha }, \\
|
||||
| Reid \cite reid_electromagnetism_2016 | | \f[
|
||||
\nabla\times\wfr_{lmM} = -ik\wfr_{lmN}, \\ \nabla\times\wfr_{lmN} = +ik\wfr_{lmM}.
|
||||
\f] | | | \f[
|
||||
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha \wfrout_\alpha }, \\
|
||||
\vect H = \frac{1}{Z_0Z^r} \sum_\alpha \pr{ \wcrreg_\alpha \sigma_\alpha\wfrreg_\overline{\alpha} +
|
||||
\wcrout_\alpha \sigma_\alpha\wfrout_\overline{\alpha}},
|
||||
\f] where \f$ \sigma_{lmM} = +1, \sigma_{lmN}=-1, \overline{lmM}=lmM, \overline{lmN}=lmM, \f$ cf. eq. (6). The notation is not extremely consistent throughout Reid's memo. | | |
|
||||
|
@ -27,7 +34,7 @@ VSWF conventions
|
|||
\wfet_{mn}^{(j)} = \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\uvec{r} \\
|
||||
+\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\theta}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}, \\
|
||||
\wfmt_{mn}^{(j)} = \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\theta}-\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
|
||||
\f] | \f[
|
||||
\f] | | \f[
|
||||
\int_{S(kr)} \wfmt_{mn}^{(j)} \wfmt_{m'n'}^{(j)}\,\ud S = n(n+1) \abs{z_n^{(j)}}^2 \delta_{m,m'}\delta_{n,n'} ,\\
|
||||
\int_{S(kr)} \wfet_{mn}^{(j)} \wfet_{m'n'}^{(j)}\,\ud S =
|
||||
\pr{\pr{n(n+1)}^2 \abs{\frac{z_n^{(j)}}{kr}}^2 + n(n+1)\abs{\frac{1}{kr}\frac{\ud}{\ud(kr)}\pr{kr z_n^{(j)}}} } \delta_{m,m'}\delta_{n,n'} ,
|
||||
|
|
Loading…
Reference in New Issue