From ac6e94065a8313eeacd171e6607dd3630447ff5d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Thu, 26 Mar 2020 09:10:27 +0200 Subject: [PATCH] Finite rect lat constant driving far field "ccd" Former-commit-id: 69fc0ebe1eba8701743d6883f877e5df70f4477d --- misc/finiterectlat-constant-driving.py | 108 ++++++++++++++++++++++--- 1 file changed, 98 insertions(+), 10 deletions(-) diff --git a/misc/finiterectlat-constant-driving.py b/misc/finiterectlat-constant-driving.py index 715af5e..7e67873 100755 --- a/misc/finiterectlat-constant-driving.py +++ b/misc/finiterectlat-constant-driving.py @@ -11,6 +11,10 @@ ap.add_argument("-o", "--output", type=str, required=False, help='output path (i ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") +ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-adapted basis of a given point group instead of individual spherical harmonics") +ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample') +ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth') +ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution') #ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition") @@ -41,6 +45,20 @@ from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar +def cleanarray(a, atol=1e-10, copy=True): + a = np.array(a, copy=copy) + sieve = abs(a.real) < atol + a[sieve] = 1j * a[sieve].imag + sieve = abs(a.imag) < atol + a[sieve] = a[sieve].real + return a + +def nicerot(a, atol=1e-10, copy=True): #gives array a "nice" phase + a = np.array(a, copy=copy) + i = np.argmax(abs(a)) + a = a / a[i] * abs(a[i]) + return a + dbgmsg_enable(DebugFlags.INTEGRATION) #Particle positions @@ -67,13 +85,30 @@ outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" nelem = len(bspec) phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector))) driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex) -for y in range(nelem): - driving_full[y,y::nelem] = phases +if a.symmetry_adapted is not None: + ss1, ssw1 = ScatteringSystem.create(particles=[Particle((0,0,0), ap.tmgen, bspec)], medium=medium, omega=omega, + sym=FinitePointGroup(point_group_info[a.symmetry_adapted])) + fvcs1 = np.empty((nelem, nelem), dtype=complex) + y = 0 + iris1 = [] + for iri1 in range(ss1.nirreps): + for j in range(ss1.saecv_sizes[iri1]): + pvc1 = np.zeros((ss1.saecv_sizes[iri1],), dtype=complex) + fvcs1[y] = ss1.unpack_vector(pvc1, iri1) + fvcs1[y] = cleanarray(nicerot(fvcs1[y], copy=False), copy=False) + driving_full[y] = (phases[:, None] * fvcs1[y][None,:]).flatten() + y += 1 + iris1.append(iri1) + iris1 = np.array(iris1) +else: + for y in range(nelem): + driving_full[y,y::nelem] = phases scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex) scattered_ir = [None for iri in range(ss.nirreps)] +ir_contained = np.ones((nelem, ss.nirreps), dtype=bool) for iri in range(ss.nirreps): logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) @@ -84,14 +119,17 @@ for iri in range(ss.nirreps): #translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) #logging.info("auxillary translation matrix created") - scattered_ir[iri] = np.empty((nelem, ss.saecv_sizes[iri]), dtype=complex) - scattered_ir_unpacked = np.empty((nelem, ss.fecv_size), dtype=complex) + scattered_ir[iri] = np.zeros((nelem, ss.saecv_sizes[iri]), dtype=complex) + scattered_ir_unpacked = np.zeros((nelem, ss.fecv_size), dtype=complex) for y in range(nelem): ã = driving_full[y] + ãi = cleanarray(ss.pack_vector(ã, iri), copy=False) + if np.all(ãi == 0): + ir_contained[y, iri] = False + continue Tã = ssw.apply_Tmatrices_full(ã) Tãi = ss.pack_vector(Tã, iri) - ãi = ss.pack_vector(ã, iri) fi = LU(Tãi) scattered_ir[iri][y] = fi scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri) @@ -106,13 +144,36 @@ for iri in range(ss.nirreps): ) logging.info("partial results saved to %s"%iriout) +t, l, m = bspec.tlm() + +if not math.isnan(a.ccd_distance): + logging.info("Computing the far fields") + ccd_size = (20 * a.ccd_distance / (max(Nx*px, Ny*py) * ssw.wavenumber.real)) if math.isnan(a.ccd_size) else a.ccd_size + ccd_x = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) + ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) + ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij') + ccd_points = np.stack(ccd_grid, axis=-1).squeeze(axis=-2) + print(ccd_points.shape) + ccd_fields = np.empty((nelem,) + ccd_points.shape, dtype=complex) + for y in range(nelem): + ccd_fields[y] = ssw.scattered_E(scattered_full[y], ccd_points, btyp=BesselType.HANKEL_PLUS) + print(ccd_fields.shape) + logging.info("Far fields done") outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta=vars(a), omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases, positions = ss.positions[:,:2], scattered_ir_packed = scattered_ir, - scattered_full = scattered_full, + scattered_full = scattered_full, + ir_contained = ir_contained, + t=t, l=l, m=m, + iris1 = iris1 if (a.symmetry_adapted is not None) else None, + irnames1 = ss1.irrep_names if (a.symmetry_adapted is not None) else None, + fvcs1 = fvcs1 if (a.symmetry_adapted is not None) else None, + #ccd_size = ccd_size if not math.isnan(a.ccd_distance) else None, + ccd_points = ccd_points if not math.isnan(a.ccd_distance) else None, + ccd_fields = ccd_fields if not math.isnan(a.ccd_distance) else None, ) logging.info("Saved to %s" % outfile) @@ -141,17 +202,30 @@ if a.plot or (a.plot_out is not None): from matplotlib import pyplot as plt, cm t, l, m = bspec.tlm() phasecm = cm.twilight + pmcm = cm.bwr + abscm = cm.plasma - fig, axes = plt.subplots(nelem, 12, figsize=(figscale*12, figscale*nelem)) - for yp in range(0,3): + fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 15, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 15), figscale*nelem)) + for yp in range(0,3): # TODO xy-dipoles instead? axes[0,4*yp+0].set_title("abs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+1].set_title("arg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+2].set_title("Fabs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+3].set_title("Farg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) + if not math.isnan(a.ccd_distance): + axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) + axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) + axes[0,14].set_title("$E_{z}$ @ $z = %g$" % a.ccd_distance) for y in range(nelem): - axes[y,0].set_ylabel("%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],)) fulvec = scattered_full[y] + if a.symmetry_adapted is not None: + driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5] + driving_descr = ss1.irrep_names[iris1[y]].join((str(fvcs[y,j]) + +"(%s, %d, %+d) " % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in +driving_nonzero_y)) # TODO shorten the complex number precision + else: + driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],) + axes[y,0].set_ylabel(driving_descr) vecgrid = fullvec2grid(fulvec) vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1)) lemax = np.amax(abs(vecgrid)) @@ -165,7 +239,21 @@ if a.plot or (a.plot_out is not None): else: for c in range(0,4): axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) - + if not math.isnan(a.ccd_distance): + fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2) + e2vmax = np.amax(np.linalg.norm(ccd_fields[y], axis=-1)**2) + print(np.sum(abs(ccd_fields[y,...,:2].real)**2).shape) + axes[y, 12].imshow(np.sum(abs(ccd_fields[y,...,:2].real)**2, axis=-1), +origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) + axes[y, 12].streamplot(ccd_points[...,1], ccd_points[...,0], +ccd_fields[y,...,1].real, ccd_fields[y,...,0].real) + axes[y, 13].imshow(np.sum(abs(ccd_fields[y,...,:2].imag)**2, axis=-1) , +origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) + axes[y, 13].streamplot(ccd_points[...,1], ccd_points[...,0], +ccd_fields[y,...,1].imag, ccd_fields[y,...,0].imag) + zplot = abs(ccd_fields[y,...,2])**2 + axes[y, 14].imshow(zplot, origin='lower', extent=fxye, cmap=abscm) + axes[y, 14].text(0.5, 0.5, '%g' % np.amax(zplot)/e2vmax, horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out fig.savefig(plotfile)